导航:首页 > 源码编译 > 计算机算法实例

计算机算法实例

发布时间:2023-04-11 20:17:42

A. 是的 计算机算法

计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。
编辑本段算法性质一个算法必须具备以下性质: (1)算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。 (2)算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。 (3)每个步骤都有确定的执行顺序,即上一步在哪里,下一步是什么,都必须明确,无二义性。 (4)无论算法有多么复杂,都必须在有限步之后结束并终止运行,即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。 一个问题的解决方案可以有多种表达方式,但只有满足以上4个条件的解才能称之为算法。编辑本段重要算法A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法,他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。编辑本段算法特点1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他是为有效算法。 2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。 3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。 4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。 5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。编辑本段算法与程序虽然算法与计算机程序密切相关,但二者也存在区别:计算机程序是算法的一个实例,是将算法通过某种计算机语言表达出来的具体形式;同一个算法可以用任何一种计算机语言来表达。 算法列表 图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra) 可以用Dijkstra解决问题的特征 负边权最短路径 Bellman-Ford Bellman-Ford的Yen-氏优化 差分约束系统 Floyd 广义路径问题 传递闭包 极小极大距离 / 极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 Euler Path / Tour Hamilton Path / Tour 特殊图的Hamilton Path / Tour 构造 生成树问题 最小生成树 第k小生成树 最优比率生成树 0/1分数规划 度限制生成树 连通性问题 强大的DFS算法 无向图连通性 割点 割边 二连通分支 有向图连通性 强连通分支 2-SAT 最小点基 有向无环图 拓扑排序 有向无环图与动态规划的关系 二分图匹配问题 一般图问题与二分图问题的转换思路 最大匹配 有向图的最小路径覆盖 0 / 1矩阵的最小覆盖 完备匹配 最优匹配 稳定婚姻 网络流问题 网络流模型的简单特征和与线性规划的关系 最大流最小割定理 最大流问题 有上下界的最大流问题 循环流 最小费用最大流 / 最大费用最大流 弦图的性质和判定 组合数学 解决组合数学问题时常用的思想 逼近 递推 / 动态规划 概率问题 Polya定理 计算几何 / 解析几何 计算几何的核心:叉积 / 面积 解析几何的主力:复数 基本形 点 直线,线段 多边形 凸多边形 / 凸包 凸包算法的引进,卷包裹法 Graham扫描法 水平序的引进,共线凸包的补丁 完美凸包算法 相关判定 两直线相交 两线段相交 点在任意多边形内的判定 点在凸多边形内的判定 经典问题 最小外接圆 近似O(n)的最小外接圆算法 点集直径 旋转卡壳,对踵点 多边形的三角剖分 数学 / 数论 最大公约数 Euclid算法 扩展的Euclid算法 同余方程 / 二元一次不定方程 同余方程组 线性方程组 高斯消元法 解mod 2域上的线性方程组 整系数方程组的精确解法 矩阵 行列式的计算 利用矩阵乘法快速计算递推关系 分数 分数树 连分数逼近 数论计算 求N的约数个数 求phi(N) 求约数和 快速数论变换 …… 素数问题 概率判素算法 概率因子分解 数据结构 组织结构 二叉堆 左偏树 二项树 胜者树 跳跃表 样式图标 斜堆 reap 统计结构 树状数组 虚二叉树 线段树 矩形面积并 圆形面积并 关系结构 Hash表 并查集 路径压缩思想的应用 STL中的数据结构 vector deque set / map 动态规划 / 记忆化搜索 动态规划和记忆化搜索在思考方式上的区别 最长子序列系列问题 最长不下降子序列 最长公共子序列 一类NP问题的动态规划解法 树型动态规划 背包问题 动态规划的优化 四边形不等式 函数的凸凹性 状态设计 规划方向 线性规划 常用思想 二分 最小表示法 串 KMP Trie结构 后缀树/后缀数组 LCA/RMQ 有限状态自动机理论 排序 选择/冒泡 快速排序 堆排序 归并排序 基数排序 拓扑排序 排序网络
扩展阅读:
1
《计算机算法设计与分析导论》朱清新等编着人民邮电出版社
开放分类:
计算机,算法

B. 请举出日常生活中两个例子来描述计算机算法

算法就是解决问题的方法
比如你要喝茶就要先找到茶叶,烧一壶开水,然后将茶叶放到杯子里,然后将开水倒入杯中,然后等一段时间
再比如你要从a地到b地,中间可能有多种汽车换乘方案,是选速度最快的,还是选最省钱的,
还是平衡的,制定换乘方案就是算法。

C. 计算机常用算法有哪些

贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。
模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html

D. 计算机十大经典算法有哪些

再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,逆着这个行进方向,从终点向始点计算,在选定系统行进方向之后,常比线性规划法更为有效,由每个阶段都作出决策,从而使整个过程达到最优化。所谓多阶段决策过程,特别是对于那些离散型问题。实际上,动态规划法就是分多阶段进行决策,其基本思路是,原问题的解即子问题的解的合并
不好意思啊,就是把研究问题分成若干个相互联系的阶段,逐次对每个阶段寻找某种决策,用来解决多阶段决策过程问题的一种最优化方法,就是把一个复杂的问题分成两个或更多的相同或相似的子问题:按时空特点将复杂问题划分为相互联系的若干个阶段。字面上的解释是“分而治之”动态规划法[dynamic
programming
method
(dp)]是系统分析中一种常用的方法。在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。动态规划法是解决此类问题的有效方法。动态规划法是20世纪50年代由贝尔曼(r,使整个过程达到最优.
bellman)等人提出。许多实际问题利用动态规划法处理,故又称为逆序决策过程。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
在计算机科学中,分治法是一种很重要的算法

E. 计算机算法有哪些尽量多一些

1、搜索算法;2、贪心算法;3、动态规划;4、最短路径;5、最小生成树;6、二分图的最大匹配;7、网络最大流;8、线段树;9、字符串匹配;10、数论、数学相关。
纯手打,望采纳

F. 在计算机科学中,有哪些非常巧妙的算法

分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法

欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值

G. 简单算法的概念,并举例说明它在程序中的作用。

1 什么叫算法
算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。
算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。
对算法的学习包括五个方面的内容:① 设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;② 表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点;③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④ 分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤ 验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。

2、算法的特性

算法的特性包括:① 确定性。算法的每一种运算必须有确定的意义,该种运算应执行何种动作应无二义性,目的明确;② 能行性。要求算法中有待实现的运算都是基本的,每种运算至少在原理上能由人用纸和笔在有限的时间内完成;③ 输入。一个算法有0个或多个输入,在算法运算开始之前给出算法所需数据的初值,这些输入取自特定的对象集合;④ 输出。作为算法运算的结果,一个算法产生一个或多个输出,输出是同输入有某种特定关系的量;⑤ 有穷性。一个算法总是在执行了有穷步的运算后终止,即该算法是可达的。
满足前四个特性的一组规则不能称为算法,只能称为计算过程,操作系统是计算过程的一个例子,操作系统用来管理计算机资源,控制作业的运行,没有作业运行时,计算过程并不停止,而是处于等待状态。

3、算法的描述

算法的描述方法可以归纳为以下几种:
(1) 自然语言;
(2) 图形,如N�S图、流程图,图的描述与算法语言的描述对应;
(3) 算法语言,即计算机语言、程序设计语言、伪代码;
(4) 形式语言,用数学的方法,可以避免自然语言的二义性。
用各种算法描述方法所描述的同一算法,该算法的功用是一样的,允许在算法的描述和实现方法上有所不同。
人们的生产活动和日常生活离不开算法,都在自觉不自觉地使用算法,例如人们到商店购买物品,会首先确定购买哪些物品,准备好所需的钱,然后确定到哪些商场选购、怎样去商场、行走的路线,若物品的质量好如何处理,对物品不满意又怎样处理,购买物品后做什么等。以上购物的算法是用自然语言描述的,也可以用其他描述方法描述该算法。

H. 用计算机语言表示算法,举个例子,和用自然语言表示算法有什么区别

比如有这么一个语句:如果a大于b,那么把a的值赋值给坦银谨max。如果计算机语言表示,就 举C语言为例子,格让基式是这样的:
if(a>b)
max=a;

自然语言表示的话就是:如果a大于b,那么把a的值赋值给搏数max。

I. 我对计算机的算法总是理解的不透彻,书上理论的东西有点看不太懂,谁能形象的举个例子说明

算法,如果抛开键稿计算机,就是解决问题的方法,类比到计算机,就是要计算机解决问题的方法,算法不是计算机中独有的,所以解决方法都可以叫算法,诸如用火烧水,用杯装水,也是一个算法.
计算机中,拿书上来说,算法枝镇就是程序的灵魂.也就是让计算机通过你"教"他,让他有解决这种问题的方法的方法就是猛亮粗算法

J. 计算机算法的算法与程序

虽然算法与计算机程序密切相关,但二者也存在区别:计算机程序是算法的一个实例,是将算法通过某种计算机语言表达出来的具体形式;同一个算法可以用任何一种计算机语言来表达。
算法列表
图论
路径问题
0/1边权最短路径
BFS
非负边权最短路径(Dijkstra)
可以用Dijkstra解决问题的特征
负边权最短路径
Bellman-Ford
Bellman-Ford的Yen-氏优化
差分约束系统
Floyd
广义路径问题
传递闭包
极小极大距离 / 极大极小距离
Euler Path / Tour
圈套圈算法
混合图的 Euler Path / Tour
Hamilton Path / Tour
特殊图的Hamilton Path / Tour 构造
生成树问题
最小生成树
第k小生成树
最优比率生成树
0/1分数规划
度限制生成树
连通性问题
强大的DFS算法
无向图连通性
割点
割边
二连通分支
有向图连通性
强连通分支
2-SAT
最小点基
有向无环图
拓扑排序
有向无环图与动态规划的关系
二分图匹配问题
一般图问题与二分图问题的转换思路
最大匹配
有向图的最小路径覆盖
0 / 1矩阵的最小覆盖
完备匹配
最优匹配
稳定婚姻
网络流问题
网络流模型的简单特征和与线性规划的关系
最大流最小割定理
最大流问题
有上下界的最大流问题
循环流
最小费用最大流 / 最大费用最大流
弦图的性质和判定
组合数学
解决组合数学问题时常用的思想
逼近
递推/动态规划
概率问题
Polya定理
计算几何 / 解析几何
计算几何的核心:叉积 / 面积
解析几何的主力:复数
基本形

直线,线段
多边形
凸多边形 / 凸包
凸包算法的引进,卷包裹法
Graham扫描法
水平序的引进,共线凸包的补丁
完美凸包算法
相关判定
两直线相交
两线段相交
点在任意多边形内的判定
点在凸多边形内的判定
经典问题
最小外接圆
近似O(n)的最小外接圆算法
点集直径
旋转卡壳,对踵点
多边形的三角剖分
数学/数论
最大公约数
Euclid算法
扩展的Euclid算法
同余方程 / 二元一次不定方程
同余方程组
线性方程组
高斯消元法
解mod 2域上的线性方程组
整系数方程组的精确解法
矩阵
行列式的计算
利用矩阵乘法快速计算递推关系
分数
分数树
连分数逼近
数论计算
求N的约数个数
求phi(N)
求约数和
快速数论变换
……
素数问题
概率判素算法
概率因子分解
数据结构
组织结构
二叉堆
左偏树
二项树
胜者树
跳跃表
样式图标
斜堆
reap
统计结构
树状数组
虚二叉树
线段树
矩形面积并
圆形面积并
关系结构
Hash表
并查集
路径压缩思想的应用
STL中的数据结构
vector
deque
set / map
动态规划/记忆化搜索
动态规划和记忆化搜索在思考方式上的区别
最长子序列系列问题
最长不下降子序列
最长公共子序列
一类NP问题的动态规划解法
树型动态规划
背包问题
动态规划的优化
四边形不等式
函数的凸凹性
状态设计
规划方向
线性规划
常用思想
二分
最小表示法

KMP
Trie结构
后缀树/后缀数组
LCA/RMQ
有限状态自动机理论
排序
选择/冒泡
快速排序
堆排序
归并排序
基数排序
拓扑排序
排序网络

阅读全文

与计算机算法实例相关的资料

热点内容
单片机的功能模块 浏览:771
安卓手机如何录制视频长时间 浏览:285
安全问题app哪个好 浏览:445
压缩水会变冰吗 浏览:526
小说配音app哪个靠谱 浏览:820
编译iso 浏览:944
照片生成pdf格式 浏览:194
病历转pdf 浏览:835
云服务器配硬件 浏览:978
服务器10k什么意思 浏览:21
pdfeditor汉化 浏览:884
新科学pdf 浏览:746
现在还有c语言编译吗 浏览:675
哪里买到单片机 浏览:480
linux文件打开数量 浏览:510
编译原理中什么是l属性文法 浏览:372
硬盘加密时出现的问题 浏览:61
如何退域命令 浏览:108
看书的app哪里看 浏览:291
服务器怎么调大 浏览:4