Ⅰ matlab的算法有哪些急用!谢谢啊!
MATLAB 产品族可以用来进行以下各种工作:
● 数值分析
● 数值和符号计算
● 工程与科学绘图
● 控制系统的设计与仿真
● 数字图像处理 技术
● 数字信号处理 技术
● 通讯系统设计与仿真
● 财务与金融工程
MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。
matlab特点
●此高级语言可用于技术计算
●此开发环境可对代码、文件和数据进行管理
●交互式工具可以按迭代的方式探查、设计及求解问题
●数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等
●二维和三维图形函数可用于可视化数据
●各种工具可用于构建自定义的图形用户界面
●各种函数可将基于MATLAB的算法与外部应用程序和语言(如 C、C++、Fortran、Java、COM 以及 Microsoft Excel)集成
MATLAB的优势
(1)友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析。
(2)简单易用的程序语言
Matlab一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。
(3)强大的科学计算机数据处理能力
MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
(4)出色的图形处理功能
图形处理功能 MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。
(5)应用广泛的模块集合工具箱
MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。目前,MATLAB已经把工具箱延伸到了科学研究和工程应用的诸多领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析、信号处理、图像处理、系统辨识、控制系统设计、LMI控制、鲁棒控制、模型预测、模糊逻辑、金融分析、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、DSP与通讯、电力系统仿真等,都在工具箱(Toolbox)家族中有了自己的一席之地。
(6)实用的程序接口和发布平台
新版本的MATLAB可以利用MATLAB编译器和C/C++数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C++代码。允许用户编写可以和MATLAB进行交互的C或C++语言程序。另外,MATLAB网页服务程序还容许在Web应用中使用自己的MATLAB数学和图形程序。MATLAB的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序。工具箱是MATLAB函数的子程序库,每一个工具箱都是为某一类学科专业和应用而定制的,主要包括信号处理、控制系统、神经网络、模糊逻辑、小波分析和系统仿真等方面的应用。
(7)应用软件开发(包括用户界面)
在开发环境中,使用户更方便地控制多个文件和图形窗口;在编程方面支持了函数嵌套,有条件中断等;在图形化方面,有了更强大的图形标注和处理功能,包括对性对起连接注释等;在输入输出方面,可以直接向Excel和HDF5进行连接。
Ⅱ 数学建模算法有哪些
1. 蒙特卡罗算法。 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。 这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。 这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。 两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。 很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。 如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。 赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
2 十类算法的详细说明
2.1 蒙特卡罗算法
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。
2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。
2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则到比赛时再写就晚了。
2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。
2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快
的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。
2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。
2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。
2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。
Ⅲ matlab的算法有哪些急用!谢谢啊!
算
啊
基本算
、数据结构
算
、数论与代数算
、计算几何
算
、图论
算
、
态规划
及数值
析、加密算
、排序算
、检索算
、随机化算
、并行算
等等
matlab
面
建议
载相应
工具箱
数
建模工具箱
编写
算
求
短路径
Dijkstra算
等等
装
help
dijkstra
查
用
另外
神经网络
工具箱
遗传算
工具箱
都
用
Ⅳ MATLAB建模方法有哪些
建模覆盖的内容很广,可以分为两大块:优化和统计,因此建模方法也可以由这两大块划分。
一.优化:
智能算法: 遗传算法,粒子群算法,模拟退火算法,蚁群算法...
基础优化算法: 目标规划,整数规划...
排队论
二.统计:
分类/聚类算法: k-means...
预测: 时间序列算法,灰色预测算法,指数平滑算法,
评价: 模糊综合评价,信息熵评价,粗糙集,数据包络分析,层次分析,
智能算法:神经网络,svm...
回归/拟合:多元线性拟合,最小二乘法
数据处理:小波变换
Ⅳ matlab中求特征值和特征向量的具体算法是什么啊
eig(A)主要用QR算法,如果A对称则使用对称QR算法(如果要特征向量的话有可能会用divide and conquer);
eig(A,B)用QZ算法,如果探测到A对称,B对称正定,则对B做Cholesky分解后再用对称QR算法;
svd的算法和对称QR算法类似。
这些不是几句话就能明白的,要学习一下矩阵计算(数值线性代数)的课程才能知道几十年前最简单的算法,软件中的算法在此基础上还增加了很多新技术,但基本方法是差不多的。
Ⅵ 最短哈密顿路径的matlab算法
给定图G,求点对s->t之间的最短路径,该问题使用经典的dijkstra算法即可解决,时间复杂度O(V^2)。基本思想:两个集合S,T,S表示已经访问的点集合,T表示未访问的点集合,S初始为空,T包括所有点;每次从T集合中选取从s到该点距离最小的点cur,然后将点cur加入到S中(保证从s到S集合中的点之间的路径长度最小),并且基于cur点为跳板,做松弛操作,更新s到T集合中其他点的距离,松弛操作即,如果dist[j] > dist[cur] + G[cur,j],更新dist[j] = dist[cur]+G[cur,j],其中j属于T集合;当cur==t时算法结束。