导航:首页 > 源码编译 > 开发数据结构与算法

开发数据结构与算法

发布时间:2023-04-16 15:32:59

Ⅰ iOS开发面试拿offer攻略之数据结构与算法篇附加安全加密

集合结构 线性结构 树形结构 图形结构

1.1、集合结构 说白了就是一个集合,就是一个圆圈中有很多个元素,元素与元素之间没有任何关系 这个很简单

1.2、线性结构 说白了就是一个条线上站着很多个人。 这条线不一定是直的。也可以是弯的。也可以是值的 相当于一条线被分成了好几段的样子 (发挥你的想象力)。 线性结构是一对一的关系

1.3、树形结构 说白了 做开发的肯定或多或少的知道 xml 解析 树形结构跟他非常类似。也可以想象成一个金字塔。树形结构是一对多的关系

1.4、图形结构 这个就比较复杂了。他呢 无穷。无边 无向(没有方向)图形机构 你可以理解为多对多 类似于我们人的交集关系

数据结构的存储

数据结构的存储一般常用的有两种 顺序存储结构 和 链式存储结构

2.1 顺序存储结构

发挥想象力啊。 举个列子。数组。1-2-3-4-5-6-7-8-9-10。这个就是一个顺序存储结构 ,存储是按顺序的 举例说明啊。 栈,做开发的都熟悉。栈是先进后出 ,后进先出的形式 对不对 ?

他的你可以这样理解, hello world 在栈里面从栈底到栈顶的逻辑依次为 h-e-l-l-o-w-o-r-l-d 这就是顺序存储,再比如队列 ,队列是先进先出的对吧,从头到尾 h-e-l-l-o-w-o-r-l-d 就是这样排对的

2.2 链式存储结构

再次发挥想象力 这个稍微复杂一点 这个图片我一直弄好 ,回头找美工问问,再贴上 例如 还是一个数组 1-2-3-4-5-6-7-8-9-10 链式存储就不一样了 1(地址)-2(地址)-7(地址)-4(地址)-5(地址)-9(地址)-8(地址)-3(地址)-6(地址)-10(地址)。每个数字后面跟着一个地址 而且存储形式不再是顺序 ,也就说顺序乱了,1(地址) 1 后面跟着的这个地址指向的是 2,2 后面的地址指向的是 3,3 后面的地址指向是谁你应该清楚了吧。他执行的时候是 1(地址)-2(地址)-3(地址)-4(地址)-5(地址)-6(地址)-7(地址)-8(地址)-9(地址)-10(地址),但是存储的时候就是完全随机的。明白了?

单向链表双向链表循环链表

还是举例子。理解最重要。不要去死记硬背 哪些什么。定义啊。逻辑啊。理解才是最重要滴

3.1 单向链表

A->B->C->D->E->F->G->H . 这就是单向链表 H 是头 A 是尾 像一个只有一个头的火车一样 只能一个头拉着跑

3.2 双向链表

数组和链表区别:

数组:数组元素在内存上连续存放,可以通过下标查找元素;插入、删除需要移动大量元素,比较适用元素很少变化的情况

链表:链表中的元素在内存中不是顺序存储的,查找慢,插入、删除只需要对元素指针重新赋值,效率高

3.3 循环链表

循环链表是与单向链表一样,是一种链式的存储结构,所不同的是,循环链表的最后一个结点的指针是指向该循环链表的第一个结点或者表头结点,从而构成一个环形的链。发挥想象力 A->B->C->D->E->F->G->H->A . 绕成一个圈。就像蛇吃自己的这就是循环 不需要去死记硬背哪些理论知识。

二叉树/平衡二叉树

4.1 什么是二叉树

树形结构下,两个节点以内 都称之为二叉树 不存在大于 2 的节点 分为左子树 右子树 有顺序 不能颠倒 ,懵逼了吧,你肯定会想这是什么玩意,什么左子树右子树 ,都什么跟什么鬼? 现在我以普通话再讲一遍,你把二叉树看成一个人 ,人的头呢就是树的根 ,左子树就是左手,右子树就是右手,左右手可以都没有(残疾嘛,声明一下,绝非歧视残疾朋友,勿怪,勿怪就是举个例子, I am very sorry ) , 左右手呢可以有一个,就是不能颠倒。这样讲应该明白了吧

二叉树有五种表现形式

1.空的树(没有节点)可以理解为什么都没 像空气一样

2.只有根节点。 (理解一个人只有一个头 其他的什么都没,说的有点恐怖)

3.只有左子树 (一个头 一个左手 感觉越来越写不下去了)

4.只有右子树

5.左右子树都有

二叉树可以转换成森林 树也可以转换成二叉树。这里就不介绍了 你做项目绝对用不到数据结构大致介绍这么多吧。理解为主, 别死记,死记没什么用

1、不用中间变量,用两种方法交换 A 和 B 的值

2、****求最大公约数

3、模拟栈操作

栈是一种数据结构,特点:先进后出 -

练习:使用全局变量模拟栈的操作

#include <stdio.h>

#include <stdbool.h>

#include <assert.h>

//保护全局变量:在全局变量前加 static 后,这个全局变量就只能在本文件中使用 static int data[1024] ;//栈最多能保存 1024 个数据

static int count = 0 ;//目前已经放了多少个数(相当于栈顶位置)

4、排序算法

选择排序、冒泡排序、插入排序三种排序算法可以总结为如下:

都将数组分为已排序部分和未排序部分。

1.选择排序将已排序部分定义在左端,然后选择未排序部分的最小元素和未排序部分的第一个元素交换。

2.冒泡排序将已排序部分定义在右端,在遍历未排序部分的过程执行交换,将最大元素交换到最右端。

3.插入排序将已排序部分定义在左端,将未排序部分元的第一个元素插入到已排序部分合适的位置。

4.1、选择排序

【选择排序】:最值出现在起始端

第 1 趟:在 n 个数中找到最小(大)数与第一个数交换位置

第 2 趟:在剩下 n-1 个数中找到最小(大)数与第二个数交换位置

重复这样的操作...依次与第三个、第四个...数交换位置

第 n-1 趟,最终可实现数据的升序(降序)排列。

4.2、冒泡排序

【冒泡排序】:相邻元素两两比较,比较完一趟,最值出现在末尾

第 1 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 n 个元素位置

第 2 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 n-1 个元素位置

…… ……

第 n-1 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 2 个元素位置

5、折半查找(二分查找)

折半查找:优化查找时间(不用遍历全部数据) 折半查找的原理:

1.数组必须是有序的

2.必须已知 min 和 max (知道范围)

// 已知一个有序数组, 和一个 key , 要求从数组中找到 key 对应的索引位置

字符串反转

给定字符串 " hello,world ",实现将其反转。输出结果: dlrow , olleh

序数组合并

将有序数组 {1,4,6,7,9} 和 {2,3,5,6,8,9,10,11,12} 合并为{1,2,3,4,5,6,6,7,8,9,9,10,11,12}

HASH 算法

哈希表

例:给定值是字母 a ,对应 ASCII 码值是 97,数组索引下标为 97。

这里的 ASCII 码,就算是一种哈希函数,存储和查找都通过该函数,有效地提高查找效率。

在一个字符串中找到第一个只出现一次的字符。如输入" abaccdeff ",输出' b '字符( char )是一个长度为 8 的数据类型,因此总共有 256 种可能。每个字母根据其 ASCII 码值作为数组下标对应数组种的一个数字。数组中存储的是每个字符出现的次数。

查找两个子视图的共同父视图

思路:分别记录两个子视图的所有父视图并保存到数组中,然后倒序寻找,直至找到第一个不一样的父视图。

求无序数组中的中位数

中位数:当数组个数 n 为奇数时,为 (n + 1)/2 ,即是最中间那个数字;当 n 为偶数时,为 (n/2 + (n/2 + 1))/2 , 即是中间两个数字的平均数。

首先要先去了解一些几种排序算法: iOS 排序算法

思路:

1.排序算法+中位数

首先用冒泡排序、快速排序、堆排序、希尔排序等排序算法将所给数组排序,然后取出其中位数即可。

2.利用快排思想

1、简述 SSL 加密的过程用了哪些加密方法,为何这么作?

SSL 加密的过程之前有些过,此处不再赘述。

SSL 加密,在过程中实际使用了 对称加密 和 非对称加密 的结合。

主要的考虑是先使用 非对称加密 进行连接,这样做是为了避免中间人攻击秘钥被劫持,但是 非对称加密的效率比较低。所以一旦建立了安全的连接之后,就可以使用轻量的 对称加密。

2、RSA 非对称加密

对称加密[算法]在加密和解密时使用的是同一个秘钥;而[非对称加密算法]需要两个[密钥]来进行加密和解密,这两个秘钥是[公开密钥]( public key ,简称公钥)和私有密钥( private key ,简称私钥)。

RSA 加密

与对称加密[算法]不同,[非对称加密算法]需要两个[密钥]:[公开密钥]( publickey )和私有密钥( privatekey )。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的[密钥],所以这种算法叫作[非对称加密算法]。

RSA**** 加密原理

RSA 是常用的加密模式,其加密原理可用以下的例子进行简要的论述。

随机取两个质数

以上就是本篇所整理的,感谢观看!

Ⅱ 什么是数据结构和算法

本人乃一个数据痴迷者,在计算机的道路上,也是一个数据结构的痴迷者,现在大学里面和同学搞开发也痴迷于数据库,我就我个人的理解给你谈一谈:
首先,数据结构是一门计算机语言学的基础学科,它不属于任何一门语言,其体现的是几乎所有标准语言的算法的思想。
上面的概念有一些模糊,我们现在来具体说一说,相信你门的数据结构使用的是一门具体的语言比如C/C++语言来说明,那是为了辅助的学习数据结构,而数据结构本身不属于任何语言(相信你把书上的程序敲到电脑里面是不能通过的吧,其只是描述了过程,要调试程序,还需要修改和增加一些东西)。你们的书上开始应该在讲究数据的物理存储结构/逻辑存储结构等概念,说明数据结构首先就是“数据的结构”,在内存上的存储方式,就是物理的存储结构,在程序使用人员的思想上它是逻辑的,比如:
你们在C/C++中学习到链表,那么链表是什么一个概念,你们使用指针制向下一个结点的首地址,让他们串联起来,形成一个接一个的结点,就像显示生活中的火车一样。而这只是对于程序员的概念,但是在内存中存储的方式是怎样的那?对于你程序员来说这是“透明”的,其内部分配空间在那里,都是随机的,而内存中也没有一个又一根的线将他们串联起来,所以,这是一个物理与逻辑的概念,对于我们程序员只需要知道这些就可以了,而我们主要要研究的是“逻辑结构”。
我可以给你一个我自己总结的一个概念:所有的算法必须基于数据结构生存。也就是说,我们对于任何算法的编写,必须依赖一个已经存在的数据结构来对它进行操作,数据结构成为算法的操作对象,这也是为什么算法和数据结构两门分类不分家的概念,算法在没有数据结构的情况下,没有任何存在的意义;而数据结构没有算法就等于是一个尸体而没有灵魂。估计这个对于算法的初学者可能有点晕,我们在具体的说一些东西吧:
我们在数据结构中最简单的是什么:我个人把书籍中线性表更加细化一层(这里是为了便于理解在这样说的):单个元素,比如:int i;这个i就是一个数据结构,它是一个什么样的数据结构,就是一个类型为int的变量,我们可以对它进行加法/减法/乘法/除法/自加等等一系列操作,当然对于单个元素我们对它的数据结构和算法的研究没有什么意义,因为它本来就是原子的,某些具体运算上可能算法存在比较小的差异;而提升一个层次:就是我们的线性表(一般包含有:顺序表/链表)那么我们研究这样两种数据结构主要就是要研究它的什么东西那?一般我们主要研究他们以结构为单位(就是结点)的增加/删除/修改/检索(查询)四个操作(为什么有这样的操作,我在下面说到),我们一般把“增加/删除/修改”都把它称为更新,对于一个结点,若要进行更新一类的操作比如:删除,对于顺序表来说是使用下标访问方式,那么我们在删除了一个元素后需要将这个元素后的所有元素后的所有元素全部向前移动,这个时间是对于越长的顺序表,时间越长的,而对于链表,没有顺序的概念,其删除元素只需要将前一个结点的指针指向被删除点的下一个结点,将空间使用free()函数进行释放,还原给操作系统。当执行检索操作的时候,由于顺序表直接使用下标进行随机访问,而链表需要从头开始访问一一匹配才可以得到使用的元素,这个时间也是和链表的结点个数成正比的。所以我们每一种数据结构对于不同的算法会产生不同的效果,各自没有绝对的好,也没有绝对的不好,他们都有自己的应用价值和方式;这样我们就可以在实际的项目开发中,对于内部的算法时间和空间以及项目所能提供的硬件能力进行综合评估,以让自己的算法能够更加好。
(在这里只提到了基于数据结构的一个方面就是:速度,其实算法的要素还应该包括:稳定性、健壮性、正确性、有穷性、可理解性、有输入和输出等等)
为什么要以结点方式进行这些乱七八糟的操作那?首先明确一个概念就是:对于过程化程序设计语言所提供的都是一些基础第一信息,比如一些关键字/保留字/运算符/分界符。而我们需要用程序解决现实生活中的问题,比如我们要程序记录某公司人员的情况变化,那么人员这个数据类型,在程序设计语言中是没有的,那么我们需要对人员的内部信息定义(不可能完全,只是我们需要那些就定义那些),比如:年龄/性别/姓名/出生日期/民族/工作单位/职称/职务/工资状态等,那么就可以用一些C/C++语言描述了,如年龄我们就可以进行如下定义:
int age;/*age变量,表示人员公司人员的年龄*/
同理进行其他的定义,我们用结构体或类把他们封装成自定义数据类型或类的形式,这样用他们定义的就是一个人的对象的了,它内部包含了很多的模板数据了。
我就我个人的经历估计的代码量应该10000以内的(我个人的经理:只是建议,从你的第一行代码开始算,不论程序正确与否,不论那一门语言,作为一个标准程序员需要十万行的代码的功底(这个是我在大学二年级感觉有一定时候的大致数据,不一定适合其他人),而十万行代码功底一般需要四门基础远支撑,若老师没有教,可以自学一些语言)。

Ⅲ 数据结构和算法在实际的软件开发中都有哪些

应用太多了。

基本上来说C#是基于面向对象语言,你所定义的所有类/结构体都算是数据结构,而且在.net类库中已经定义中诸多可用的类型以供使用。实际开发中根本就离不开结构与算法。

题主之所以有这样的问题,基本上认识到了很多程序员易犯的一个毛病——理论知识与实际应用中的脱节问题,不少程序员都说自己写程序用不上理论知识,或者是理论无用。我一直认为理论才是真正编程的指导,别说你所学的理论知识了,有时我们必须遵守一些软件活动上的标准/规范/规定。比如ISO29500标准有多少程序员读过或听说过?他实事就是关于openxml的一个国际标准,我们要想达到通用的程序,这些标准还是读一读的好。

扯回你的问题,什么是数据结构,什么是算法?如果你真的狭义理由数据结构,或者只是从课本上例子来说,数据结构被定义成一个只有属性成员的类或结构体才算是数据结构吗?事实上并不是,那么是不是只有链表/栈/队列才算是数据结构呢?可以说这是某些人狭义理解数据结构时的一种常规定势思维,但事实上来说,类或结构是数据结构的基本,否则你链表存在的实体到底是什么东西?所以数据结构包含着基本结构与狭义上的顺序表/链表/栈/队等存在实体的集体。为什么我说数据结构在实际运用中广泛体现呢?就数据结构而言,课本上只是为了讲明白结构而已,弱化了其中实体的真正含义,而且不语言的具体实现亦不尽相同,所以他们所讲的数据结构是基本理论的。

我来个例子:链表(C#语言)

publicclassMember
{
publicstringName{get;set;}
publicstringResponsibility{get;set;}
publicstringPosotion{get;set;}
}

publicclassMemberNode
{
publicMemberMember{get;set;}
publicMemberNext{get;set;}
}

//Node其他就是链表中的一个结点结构,这个结点结构除了指明当前的Member之下还指向下Next的下一个结构结构,它最终可以形成一个链表。这就是定义的一个链表。

从以上例子上你可以看出这是一个类似于课本的标准定义,但事实上在C#语法中存在泛型的特点,那么这类似的结构我们不须要一个个地定义了!所以在不同的语言中为了方便编程者,我们甚至可以把这样的结构进行简单化,从而达到一种最简单的使用方式。以C#为例,我们可以使用Node<T>来表示链表/List<T>表示顺序表/Stack<T>表旅亮绝示栈/Queue<T>表示队列,在这种情况下,我们只需要定义我们的泛型即可,结构链之类的本身使用泛型已经在类库中实现了——虽然你不用定义,但不代表不使用或者不用理解这其中的知识。而在课本讲理论的时候,他不可能附带泛型来讲的,所以很多人认为自己去定义数据结构才行,那才是“真正”的数据结构,其实不然。以链表为例,我们需要一个节点除了其实体意义之外,还存在指向下一结点的指针(其实是地址引用)才算是数据结构。根据课本,他们必须这么定义(C#):

publicclassMemberNode
{
publicstringName{get;set;}
publicstringResponsibility{get;set;}
publicstringPosition{get;set;}

publicMemberNodeNext{get;set;}
}
//死读书的只会承认这种才是真正的数据结构吧(链表节点)

事实上,链表讲的只是一种形式,能最终形成的一种组织数据结构的形式。这个代码会导致我们出现一种极大的误解——每个类型的结构都需要重新定义一次。如果有多个类型结构的话,我们会出现多个不同的定义,这会导致将来类的定义越来越多,对于维护上来说是比较麻烦的。由于设计模式/面向切片等各种开发方式的介入,我们会使用相对比较简单的形式。所以才会有我定义两个类的进步,而后可以出现泛型的更进一步。

你可以这样理解,这种课本上的结构,会导致我们造成每种拆姿结构基本上都需要重新定义一次,我最开始给出的例子键昌可以使用继承的方式,实现某个基类的数据结构(下面的似乎也行,但在使用中可能会出现部分问题),而Node<T>则从根本上解决了这个问题,可以支撑多种类型。

所以此时在理解数据结构时,比如Node<T>,他不旦要求理解链表的节点,还要理解T泛型,那么在数据结构上来说,它指的不再是单一的节点结构,还在包括一个基础的类型。

换句话来说,你在C#等语言中已经不需要再做类似的定义了,只需要定义其基本结构类型即可。但课本上在讲知识的时候,它不可能只针对面向对象或支持泛型的语言来讲,若不支持泛型时,我们必须使用课本上或我最开始写的例子中的形式,若不支持继承的面向过程语言,那么课本上的知识就是硬性的规定,你必须以这种形式来说,而引用则使用指针引用的方式(面向对象的引用其实是一种引用型引用,也就是址引用或称地址引用,与指针类似)。

相信讲到这里你能明白,数据结构在不同的语言中只是变了个形而已,并不是必须是存在指针的才是,也不是只说表面上的那点东西。早期教程都是以fortain语言为主的,而且课本的目的是讲清道理,而不是一种规定。死读书的人以为用不到数据结构,其实他们一直在使用。

再来说一下算法,算法是什么?是解决问题的一种模式,比如解二元一次方程等等,所以算法的定义其实已经告诉你,顺序代码他也算是一种算法,不能说只有背包问题,八皇后问题,回溯问题才算是算法——你能明白吗?其实你正常写的就是一种算法,这种算法简单,就是顺序执行下来就可以了,他也是一种算法的,就算解二元一次方程组有固定的模式(算法),但不代表加减法就不是算法了!所以算法也是常用的东西,那么你学习的算法其实算是开辟思路的一种而已。算法自身的概念已经决定,基本上程序都是由结构与算法构成。我也来举个例子,怎么判断某个链表是否为循环链表?是你的回溯算法,贪心算法还是背包算法?它们只是在解决一些典型问题的一种通用方式而已,很显然,我的问题不是这种典型问题,但不代表他不典型,我们正常的算法是设计两个变量等于头元素,然后开始进入循环,一个变量每次向下推一,即找到他下一个节点,而另一个变量每次找到其孙节点,就算当于两个变量一个每次向下推进一次,而另一个每点推进两次(如果可能),如果不是循环链表,则进两次的那个会在链表总长度的一半时,遇到空引用,否则会在某一时间两指针引用同一对象(不是对象相等,而是引用相同的对象),什么意思呢,好象两个人在圆型跑道上跑步,一个每秒1米,另一个每秒2米,同时同地同向出发,最归跑得快的那个会追上跑得慢的那个!当然这种情况下你也可以给他起个名字,叫“追及算法”?如果只有你学的那几个典型算法是算法的话,这个算不算算法?

现在我们的问题是,如果语言层面上已经实现了这些东西,那么这些理论我们是否可以不用理解就可以了?答案是可以——如果你只是一个不思进取的程序员或允许bug乱飞的没有责任心的编程人员的话,可以不用理解——毕竟有些人只是“混”饭吃而已!

理解了不会去应用,这就是典型的理论联系不到实际,他们也不知道自己的代码将如何控制。我举一个例子,由于性能等各方面的要求,我们要使用多线程对某些数据进行处理。怎么处理?不好人会使用多线程——他们定义一个临界资源,然后让多个线程在读取数据表(DataSet)时进行阻塞,然后每个线程去处理那些超时长的问题,处理完的时个再按这种方式读取数据——这样有问题吗?没有,这也算是算法的一种!反正如果编程代码有功底的话没有任何问题的,这种代码算不算优雅呢——很多人认为代码的优雅就是代码编写过程的形式或是良好的编程习惯!这里边其实用不到数据结构与算法的。

好吧,我承认,但如果我们换一句思路来看看,如果我用一个线程负责读取数据,并不停地放入到一个队列中,而多个线程从队列中不停地读取处理这些放入的数据,这样如何?我的意思是说,并没有直接在DataSet中处理,而是选择使用队列的方式。

我们看一个问题,这个队列Queue<T>,一个线程用来插入数据,多个线程用来读取数据,而且要保证不能重复,那么我们可以使用队列的安全版本(CorrentQueue<T>,在.net中如果非线程安全的情况下,多线程使用实应该找到其对应的安全版本或者控制线程安全)。

插入线程如果发现队列中的长度(容量)较大时,可以暂缓插入。这样可以保证队列的长度基本固定,占用内存得到控制(不是DataSet批量读来一大堆),由于使用安全队列,所以各线程不用考虑线程之间的安全问题,每个线程从队中获得数据并删除,可以保证数据只被处理一次。当然还可以考虑优雅的通知机制,插入线程在插入数据时通知处理线程启动,如果插入速度过快,发现插入数量达指定的长度(比如30个),停止插入,插入线程阻塞;处理处理再次处理时可通知插入线程再进行插入。

这也算是一种算法吧?它可以让插入线程与处理线程同时工作,而使用DataSet那种常规的结果时,只能是等待处理完或加入多个控制条件进行控制,既然这么控制的话,何不直接使用队列的方式?CorrentQueue<T>中的T也完全可以是一条记录DataRow嘛!

如果你认为第一种是你经常使用方式,那么算法对于你来说学与不学无所谓的,你必须使用自己的编程/调试功底以保证你的代码尽量很少出错或不出错。而如果你认为第二种方案优雅一些的话,那么你会认为你学习的算法与结构还是有用的,理论与实践结合了。

我之所以举这么一个例子,其实告诉你的无非是几点非常重要的信息:

  1. 你有选择算法的自由(只不过是代码质量、后期维护的问题)

  2. 如果你知道的较多的算法与结构,你会有更多的选择。

  3. 算法或结构在实际使用中,所谓的典型问题并不是使用场景和书上描述一模一样(试想一下,我第二种考虑的例子中,是不是跟书上比他不典型?其实也是非常典型的)

  4. 分析问题时,应该拿要点,而不是整体去套。(如果整体去套用的话,你肯定会想不到使用哪种结构或算法)

  5. 不管是数据结构/算法/设计模式都要求是灵活运用,而不是场景对比使用,也不是生搬硬套。

试想一下,你的背包问题,怎么可能公司也让你分拆包装?你的八皇后问题公司恰好让你下棋?你的贪心算法公司恰好让你找零钱?你的回溯算法公司恰好让你走迷宫?学不能致用的原因就是太死板——这几个举个例子的场景你再遇到或理能遇到的机率是非常小的,所以如果觉得学了没用,那就真没用了——只不过不是算法没用,而是人没人!

讲个小故事:从前一个家人的板凳坏了,要找一个合适的两股叉的树杈重新制做一个板凳腿,让孩子到树园里找了半天,孩子回来说“我都没见过有向下叉的树杈!他老爹气得要死——怎么会可能有向下长的树杈呢!这孩子是不是笨——你就不会把地刨了找一个向下分叉的树根!

算法也是一样,迷宫找路可以使用回溯算法,但不是所有的回溯算法都用于迷宫找路——它还可以用来设计迷宫!嘿嘿嘿!

Ⅳ 前端开发是否有必要知道数据结构和算法

如果只是单纯做前端,没有。前端的核心是DOM。算法和数据结构是为了解决效率问题的,而提升前端的效率用到的概念往往仅仅是常识级别的。甚至一些流行的中小型库中都看不到任何数据结构。可以认为前端是程序员里的一个特例,一般程序员面对的是计算机,前端开发人员面对的仅仅是浏览器。如果只是关注前端,学习数据结构和算法的收益还不如去读jQuery源码

既然前端用不上,楼主还是问到了这个问题,那就说明楼主关注的不仅仅是如何成为一个熟练的前端,而是成为一个优秀的软件工程师。网站开发之所以流行,一部分是因为开发成本低。这些节省下来的成本,一部分就是开发人员的薪水。换句话说,前端开发简单,门槛低,所以收入低,可替代性强。跳出前端这个领域,把自己放到软件工程师的队伍里,再看这个问题,答案就显而易见了。如果只是专注于前端技术,那么能解决的也仅仅是一小部分问题。

如果楼主关心的是如何更好地解决前端的问题,那么在相当长的一段路上数据结构和算法是优先级很低的。如果楼主关心的是自己的职业规划和自身素质的提升,数据结构和算法则在任何时候都是优先级最高的。

Ⅳ 为什么数据结构与算法,对前端开发很重要

前端的技术领域和范围正在飞速演进中,再过3年5年不懂算法和数据结构的前端慢慢就淘汰了。几大互联网公司的已经开始在使用数据挖掘、贝叶斯、3D图形图像等领域算法到前端领域。对浏览器的了解也逐步深入到内部实现机制原理上,从原理上理解渲染。无线端的前端越来越像嵌入式应用开发,这些都更需要有扎实而综合的计算机专业基础。

Ⅵ 什么是数据结构和算法分析在编程里起到什么作用

编程是为了解决问题,这些问题并表都是数值计算,其所处理的数据并不都是数值,但计算机所能处理的最终是0和1的二进制串,所以需要把问题中的数据用计算机能处理的方式来表示,这就需要数据结构。

简单的说,数据结构是数据在计算机中的表示方式,有逻辑结构和物理结构之分,如逻辑上同样的队列,物理上可以是顺序存储,也可以是链式存储。

通俗的讲,算法就是解决问题的方法,比如同样的排序,可以用冒泡排序、插入排序等,不同的算法可以达到相同的目标,但是效率可能有所不同。

Ⅶ 什么是数据结构什么是算法算法与程序有什么关系

在计算机编程领域,数据结构与算法的应用是无处不在。比如图像视频处理、数据压缩、数据库、游戏开发、操作系统、编译器、搜索引擎、AR、VR、人工智能、区块链等领域,都是以数据结构与算法为基石。

数据结构与算法属于开发人员的基本内功,也能训练大脑的思考能力,掌握一次,终生受益。扎实的数据结构与算法功底,能让我们站在更高的角度去思考代码、写出性能更优的程序,能让我们更快速地学习上手各种新技术(比如人工智能、区块链等),也能让我们敲开更高级编程领域的大门。

数据结构与算法更是各大名企面试题中的常客,如果不想被行业抛弃、想进入更大的名企、在IT道路上走得更远,掌握数据结构与算法是非常有必要。

Ⅷ 数据结构与算法知识

对于大多数的程序员来说,在学习数据分析等技术的时候需要先了解关于数据结构以及算法等知识点,下面我们就给大家简单介绍一下什么是数据结构?什么是算法?



大部分数据结构和算法教材,在开篇都会给这两个概嫌唯乱念下一个明确的定义。但是,这些定义都很抽象,对理解这两个概念并没有实质山旁性的帮助,反倒会让你陷入死抠定义的误区。毕竟,我们现在学习,并不是为了考试,所以,概念背得再牢,不会用也就没什么用。

虽然我们说没必要深挖严格的定义,但是这并不等于不需要理解概念。下面我就从广义和狭义两个层面,来帮你理解数据结构与算法这两个概念。

从广义上讲,数据结构就是指一组数据的芹档存储结构。算法就是操作数据的一组方法。

图书馆储藏书籍你肯定见过吧?为了方便查找,图书管理员一般会将书籍分门别类进行“存储”。按照一定规律编号,就是书籍这种“数据”的存储结构。

那我们如何来查找一本书呢?有很多种办法,你当然可以一本一本地找,也可以先根据书籍类别的编号,是人文,还是科学、计算机,来定位书架,然后再依次查找。笼统地说,这些查找方法都是算法。

从狭义上讲,也就是我们专栏要讲的,是指某些着名的数据结构和算法,比如队列、栈、堆、二分查找、动态规划等。这些都是前人智慧的结晶,我们可以直接拿来用。我们要讲的这些数据结构和算法,都是前人从很多实际操作场景中抽象出来的,经过非常多的求证和检验,可以高效地帮助我们解决很多实际的开发问题。

那数据结构和算法有什么关系呢?为什么大部分书都把这两个东西放到一块儿来讲呢?

这是因为,数据结构和算法是相辅相成的。数据结构是为算法服务的,算法要作用在特定的数据结构之上。因此,我们无法孤立数据结构来讲算法,也无法孤立算法来讲数据结构。

比如,因为数组具有随机访问的特点,常用的二分查找算法需要用数组来存储数据。但如果IT培训选择链表这种数据结构,二分查找算法就无法工作了,因为链表并不支持随机访问。

数据结构是静态的,它只是组织数据的一种方式。如果不在它的基础上操作、构建算法,孤立存在的数据结构就是没用的。


Ⅸ “Unity3D开发”经常用到什么算法和数据结构

第一谨灶,unity只是一个工具x0dx0a第二,算法和数据结构和具体的工具无关x0dx0a第三,编程基本的算法无非是排序算法、姿昌树形结构、链表、队列等x0dx0a第四,算法根据需要去使用,如果是做游戏,一堆的计算机图形学知识需要掌握,如果做迹晌扒3d,必要的3d知识不能少。如果使用物理引擎,请学好各种物理知识。如果做渲染,请做好shader编程的知识储备。x0dx0a第五,unity提供了足够多的功能,理解是前提,使用是基础,融会贯通是目的

Ⅹ iOS开发之一数据结构与算法

1、 数据结构 其实就是数据和结构,就是一堆数据在内存中以什么样的兆首形式存在。

2、 数据 在内存族悉数中的结构分为 逻辑结构 物理结构

数据在内存中有4种:集合结构, 线性陆歼结构,树型结构,图形结构。

阅读全文

与开发数据结构与算法相关的资料

热点内容
android平滑滚动效果 浏览:841
什么是编译器指令 浏览:219
微控制器逻辑命令使用什么总线 浏览:885
程序员在学校里是学什么的 浏览:601
oraclejava数据类型 浏览:890
程序员考注册会计师 浏览:957
怎么使用access的命令按钮 浏览:899
有点钱app在哪里下载 浏览:832
博途v15解压后无法安装 浏览:205
什么是根服务器主机 浏览:438
安卓手游怎么申请退款 浏览:555
安卓系统如何分享网页 浏览:278
ad如何编译pcb工程 浏览:414
除了滴滴app哪里还能用滴滴 浏览:399
截图怎么保存文件夹然后压缩 浏览:8
幻影服务器怎么样 浏览:28
具体哪些广东公司招程序员 浏览:870
嵌入式编译器教程 浏览:307
ssl数据加密传输 浏览:87
51单片机定时器方式2 浏览:332