㈠ 怎样教幼儿园学前班学五指速算法
对于幼儿讲,不宜过难,最好编成儿歌,每次教他们学一部分,慢慢就可以学懂啦。 五指速算法-----手心算------ 表示数的方法是以左手五指设点作为数码盘,每个手指表示一位数,五个手指可表示个、十、百、千、万五位数字。 每个手指上9个数,首先我们看,我们的手指上有三根骨节,从上到下,第一骨节中部左侧表示 1,第二骨节中部左侧表示 2,第三骨节中部左侧表示 3,从3往下移到手掌上表示 4,手指的上端表示 5,指肚表示 6,手掌上有三道横纹,从上到下,第一道横纹表示 7,第二道横纹表示 8,第三道横纹表示9。 五手指速算法。手心算的计算方法是采用心算办法利用大脑形象再现指算计算过程而求出结果的方法。它把左手当作一架五档的小算盘,用右手五指点按这个小算盘来进行计算。记数时要用右手的手指点左手相对应的手指。其明确分工是:右手拇指/专点左手拇指,右手食指专点左手食指,右手中指专点左手中指,右手无名指专点左手无名指,右手小指专点左手小指。对应专业分工各不相扰。哪个手指点按数,哪个手指就伸开,手指不点按数时弯屈,表示0。它不借助于任何计算工具,不列运算程序,只需两手轻轻一合,便知答数,便可进行十万以内任意数的加减乘除四则运算。
㈡ 儿童手指算法教程
儿童手指算法教程如下:
1,手指定位口诀 我有一双手,代表九十九;左手定十位,九十我会数; 右手定个位,从一 数到九;加减很方便,计算不用愁。
2,手指定数口诀 食指伸开“l”,中指伸开“2”; 无名指为“3”,小指伸开“4”; 四指一握伸拇指,拇指是“5”要记住; 再伸食指到小指。
3,右手出指练习口诀 一马当先,二虎相争,三言两语,四海为家,五谷丰登, 六畜兴旺,七上八下,八仙过海,九牛一毛,十万火急。
手指速算法教程如下:
1,手指速算法--手心算--表示数的方法是以左手五指设点作为数码盘,每个手指表示一位数,小拇指、无名指、中指、食指、大拇指可分别表示个、十、百、千、万五位数字。
2,每个手指上9个数,首先我们看,我们的手指上有三根骨节,从上到下,第一骨节中部左侧表示1,第二骨节中部左侧表示2,第三骨节中部左侧表示3,从3往下移到手掌上表示4,手指的上端表示5,指肚表示6,第一道横纹表示7,第二道横纹表示8,第三道横纹表示9。
3,手指速算法。手心算的计算方法是采用心算办法利用大脑形象再现指算计算过程而求出结果的方法。它把左手当作一架五档的小算盘,用右手五指点按这个小算盘来进行计算。记数时要用右手的手指点左手相对应的手指。
4,手指速算法其明确分工是:右手拇指专点左手拇指,右手食指专点左手食指,右手中指专点左手中指,右手无名指专点左手无名指,右手小指专点左手小指。对应专业分工各不相扰。哪个手指点按数,哪个手指就伸开,手指不点按数时弯屈,表示0。
㈢ 手指速算数数指法
手指速算数数指法概括如下:
1、手指速算,每只手分别都可以从1表示到10。一只手表示个位,一只手表示十位。
以右手手为例:大拇指代表5,其余四个手指分别代表四个一。当我们数数时0用拳头表示,1就用食指表示,2就用食指和中指表示,3用食指中指和无名指表示,4就用食指中指无名指和小手指表示。
二、手指定数口诀
食指伸开“l”,中指伸开“2”;
无名指为“3”,小指伸开“4”;
四指一握伸拇指,拇指是“5”要记住;
再伸食指到小指,“6”“7”“8”“9”排成数。
㈣ 幼儿园手指速算口诀表完整版是什么
幼儿园手指速算口诀表完整版如下:
1.加大减差法口诀:用第一个加数加上第二个加数的整十、整百、整千……再减去第二个加数与整十、整百、整千……的差,等于和。
2.手指定数口诀
食指伸开“l”,中指伸开“2”。
无名指为“3”,小指伸开“4”。
四指一握伸拇指,拇指是“5”要记住;
再伸食指到小指,“6”“7”“8”“9”排成数。
3.求只是两个数字位置变换两位数的和
口诀:(首尾)×11=和幼儿加减法手指速算
4.左手出指练习口诀
一十,二十,三十,四十;五十,
六十,七十,八十,九十,一百。
5.一目三行加法口诀
提前虚进1,中间弃9,末尾弃10。幼儿加减法手指速算。
㈤ 幼儿园手脑速算口诀是什么
准备:家长在带读以下口决并做相关手指游戏前,需发出口令“清零”,幼儿马上双手击掌,然反紧握双拳在胸前,聚精会神做好准备。(注意:手心朝里,两拳间隔以方便双手出指为准,既不要太近也不要太远。) 一、手指定位口决 我有一双手,代表九十九,左手定十位,九十我会数,右手定个位,从一数到九:加减很方便,计算不...用愁。 二、手指定数口决 食指伸开“1”中指伸开“2”无名指伸开为“3”小指伸开“4” 四指一握伸拇指,拇指是“5”要记住,再伸食指到小指,6、7、8 、9排成数。 三、右手出指练习口决 一马当先,二虎相争,三言两语,四海为家,五谷丰登,六畜兴旺,七上八下,八仙过海,九牛一毛,十万为急。一言九鼎,二龙戏珠,三足鼎立,四面楚歌,五谷丰登,六神无主,七上八下,八面玲珑,九牛一毛,十全十美。(注:念到“十万火急”或“十全十美”时,右手握拳,左手出“1”,代表进位。 四、左手出指练习口决一十,二十,三十,四十,五十,六十,七十,八十,九十,一百。(注:念到”一百“时,双手击掌,然后紧握双拳在胸前。) 不知道符合吗?
㈥ 手指速算3+2或者是5-2怎么算求帮助
手指速算法计算时首先要掌握手指代表的数字含义:
3是左手小拇指第三个关节的指缝处,2是左手小拇指第二个关节的指缝处,5是左手小拇指指尖处:
(6)幼儿园右手5之内速算法扩展阅读:
手指速算的口诀方法:
1、手指定位口诀:我有一双手,代表九十九;左手定十位,九十我都会;右手定个位,从一数到九;加减很方便,计算不用愁。
2、手指定数口诀:食指伸开“1”,中指伸开“2”;无名指为“3”,小指伸开“4”;四指一握伸拇指,拇指是“5”要记住;再伸食指到小指,“6”“7”“8”“9”排成数。
㈦ 幼儿加减法手指速算教学方法
幼儿加减法手指速算教学方法如下:
右手握拳表示0,依次伸出食指数1,中指数2,无名指数3,小指就数4,收回四个指头,然后伸出大拇指就数5,再依次伸出食指数6,中指数7,无名指数8,小指就数9,10的话,左手伸出1,右手握成拳头表示0,就是10了,依此类推可以一直数到99,加法就是顺着数,减法就是倒着数。
其实,我们每一个正常人的手也是一个完美的计算器,用手心算可以进行多位数的加、减、乘、除、平方、开方这六种运算,其运算速度(当然要经过一定时间的练习),加减可与电子计算机相媲美,乘除比珠算要快,平方、开平方比笔算快得多。
㈧ 手脑速算怎么教小孩算 5-1,5-2,5-3,5-4,6-2,6-3,6-4,7-3,7-4,8-4
上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。
两个数之和等于10,则称这两个数互补。在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同” 型。计算这两类题铅姿目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。
例1 (1)76×74=? (2)31×39=?
分析与解:本例两题都是“头相同、尾互补”类型。
(1)由乘法分配律和结合律,得到
76×74
=(7+6)×(70+4)
=(70+6)×70+(7+6)×4
=70×70+6×70+70×4+6×4
=70×(70+6+4)+6×4
=70×(70+10)+6×4
=7×(7+1)×100+6×4。
于是,我们得到下面的速算式:
(2)与(1)类似可得到下面的速算式:
由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。“同补”速算法简单地说就是:
积的末两位是“尾×尾”,前面是“头×(头+1)”。
我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法。
例2 (1)78×38=? (2)43×63=?
分析与解:本例两题都是“头互补、尾相同”类型。
(1)由乘法分配律和结合律,得到
78×38
=(70+8)×(30+8)
=(70+8)×30+(70+8)×8
=70×30+8×30+70×8+8×8
=70×30+8×(30+70)+8×8
=7×3×100+8×100+8×8
=(7×3+8)×100+8×8。
于是,我们得到下面的速算式:
(2)与(1)类似可得到下面的速算式:
由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。“补同”速算法简单地说就是:
积的末两位数是“尾×尾”,前面是“头×头+尾”。
例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。当被乘数和乘数多于两位时,情况会发生什么变化呢?
我们先将互补的概念推广一下。当圆激拦两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。如43与57互补,99与1互补,555与445互补。
在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。例如, 因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。又如,
等都是“同补”型。
当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。例如,
等都是“补同”型。
在计算多位数的“同补”型乘法时,例1的方法仍然适用。
例3 (1)702×708=? (2)1708×1792=?
解:(1)
(2)
计算多位数的“同补”型乘法时,将“头×(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后橘胡几位。
注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。
在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。
例4 2865×7265=?
解:
练习2
计算下列各题:
1.68×62; 2.93×97;
3.27×87; 4.79×39;
5.42×62; 6.603×607;
7.693×607; 8.4085×6085。
㈨ 手指心算速算口诀是什么
手指心算速算口诀:
我有一双手,代表九十九;左手定十位,九十我都会;
右手定个位,从一数到九;加减很方便,计算不用愁。
手心算的计算方法是采用心算办法利用大脑形象再现指算计算过程而求出结果的方法。它把左手当作一架五档的小算盘,用右手五指点按这个小算盘来进行计算。
记数时要用右手的手指点左手相对应的手指。其明确分工是:右手拇指专点左手拇指,右手食指专点左手食指,右手中指专点左手中指,右手无名指专点左手无名指,右手小指专点左手小指。
对应专业分工各不相扰。哪个手指点按数,哪个手指就伸开,手指不点按数时弯屈,表示0。它不借助于任何计算工具,不列运算程序,只需两手轻轻一合,便知答数,便可进行十万以内任意数的加减乘除四则运算。