‘壹’ Floyd算法是什么
Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3); 其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]} map[i,j]表示i到j的最短距离 K是穷举i,j的断点 map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路
‘贰’ 最短路径的弗洛伊德算法我曾经想出不严格的证明,不满意,严格的数学证明,我无法想出来,如何得到
看下于丹讲的论语 绝对对你管用 要用心去领会《论语》心得(一)《天地人之道》 mms://winmedia.cctv/jiajiangtan/2006/11/jiajiangtan_300。
‘叁’ 求弗洛伊德算法的详细解释~
floyd算法思想:1,构建一个邻接矩阵存储任意两点之间的权值如图D0.
2、例如求v1,v4之间的最短路径。先增加v2做中间顶点,D[1][4]=∞。if(D[1][4]>D[1][2]+D[2]4])=6+4)D[1][4]=10;这样就可以了。
3、如不能在离得较远的两点(例v1,v9)直接得到上述可以满足if的中间点,则跟据你书本的代码可以先构建原点到中间点的最短路径,继而就可以求得vi,v9之间的最短路径
‘肆’ 弗洛伊德算法
通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}
map[i,j]表示i到j的最短距离
K是穷举i,j的断点
map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路
‘伍’ 弗洛伊德算法有向图是否有漏洞
摘要 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。
‘陆’ 弗洛伊德的算法(Floyd’s algorithm )
假设这个图的weight matrix存在map[5][5]中,
for(intk=0;k<5;k++)
for(inti=0;i<5;i++)
for(intj=0;j<5;j++)if(i!=j){
if(map[i][k]+map[k][j]<map[i][j])
map[i][j]=map[i][k]+map[k][j];
}
处理完之后map[i][j]存的就是i,j之间的最短路径长度。
简单的说,当执行完一次最外层循环时,map记录的时i,j之间允许使用中间节点{0, ..., k}的最短路径。
‘柒’ 迪杰斯特拉算法和弗洛伊德算法有什么区别
带权的无向图的最短路径又叫最小生成树,Prim算法和Kruskal算法;带权的有向图的最短路径算法有迪杰斯特拉算法和佛洛依德算法;
‘捌’ Floyd算法的算法过程
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
‘玖’ floyd算法
这是由其算法本身所决定的,其每一步求出任意一对顶点之间仅通过中间节点1,2,...,k的最短距离,当1,2,...,k扩展到所有顶点时,算法解出任意一对顶点间的最短距离,故顺序自然是:
for(k=1;k<n;++k)
//枚举任意一对顶点
由其状态转移方程来看,这个算法的顺序也很清晰,应该是先计算较小的k时任意ij之间的最短距离:
dij(k) = wij 如果k=0
min(dij(k-1),dik(k-1)+dkj(k-1)) 如果k>=1
其中i,j表示点对,k表示第1,2,...,k时的最短路径
‘拾’ Floyd算法的算法描述
a)初始化:D[u,v]=A[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If D[i,j]>D[i,k]+D[k,j] Then
D[i,j]:=D[i,k]+D[k,j];
c)算法结束:D即为所有点对的最短路径矩阵