❶ a22怎么算 排列组合
A22算法是A22=2*1=2。
A22属于排列,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列,表示为Amn。排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合加法原理和分类计数法
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2、第一类办法的方法属于集合A1,第二类办法亩昌的方法属于集合A2,……,歼稿第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
3、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同迅改扒(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
❷ 如何计算排列组合中的A
排列组合中的C和A计算方法如下:
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合注意:
对于某几个要求相邻的排列组合问题,可将相邻的元素看做一个“元”与其他元素排列大枯物,然后对“元”的内部进行排列。注意事项: 对于某几个元素不相邻的排列问题,可先讲败银其他元素排好,再将不相邻的元素在已排列好的元素之间空隙中及两端插入即可滚液。
❸ 排列a的算法是什么
计算方法:
(1)排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
两个常用的排列基本计数原理及应用:
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务。两类不同办法中的具体方法,互不相同(即分类不重)。完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务。各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
❹ 集合的概念及其基本运算
指若干具有共同属性的事物的总体。如全部自然数就乱岩成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称“集”。
集合是指具有某种性质的事物的总体。集合运算法则
并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}。
差集表示
交集:由属于A且属于B的元素组成的集合,记作A∩B(或B∩A),读作“A交哗芹御B”(或“B交A”),即A∩B={x|x∈A,且x∈B}。
补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}
集合性质
若A包含于B,则A∩B=A,A∪B=B
集合交换律
A∩B=B∩A
A∪B=B∪A
集合结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
集合分配对偶律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
集合对偶律
(A∪B)^C=A^C∩B^C
(A∩B)^C=A^C∪B^C
集合的摩根律
集合
Cu(A∩B)=CuA∪CuB
首戚Cu(A∪B)=CuA∩CuB
集合吸收律
A∪(A∩B)=A
A∩(A∪B)=A
集合求补律
A∪CuA=U
A∩CuA=Φ
❺ 排列组合中A和C怎么算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(5)集合a的算法扩展阅读:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
❻ 什么叫集合的基本运算
集合的基本运算:交集、并集、相对补集、绝对补集、子集。
(1)交集:集合论中,设A,B是两个集合,由所有羡扮属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
(2)并集:给定两个集合A,B,把所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
(3)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。
基数:
集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有兄巧灶限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做宽枣无限集。
假设有实数x < y:
①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;
②(x,y):小括号是不包括边界,即表示大于x、小于y的数。
以上内容参考:网络-集合
❼ 子集和真子集的公式是什么
子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2。
一个集合A={xl1,2}的子集有空集{1}、{2}、{1,2}共4个子集,也就是一个集合的子集是包括这个集合本身的。
一个集合A={xl1,2}的真子集有空集{1}、{2}共3个真子集,一个集合的真子集不包括这个集合本身,重点理解这个真字。
真子集的集合符号有个等于号被划了一条线,说明不等于,也就是一个集合的真子集不能等于这个集合本身。
子集是一个数学概念:
对于一个有n个元素的集合而言,其共有2^n个子集真子集个数公式。其中空集和自身。另外,非空子集个数为2^n -1;真子集个数为2^n -1。
非空真子集个数为2^n -2.定义:如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集。对于两个非空集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说A⊆B(读作A包含于B),或B⊇A(读作B包含A),称集合A是集合B的子集。
❽ 集合A*集合A怎么计算
两集合的乘积在数学上定义为集合的笛卡州薯尔乘积。具体解洞耐释见下册颤者:
❾ 求a的集合怎么求
解:
因2013属于A
所以a+2012=2013或a^2+a+2011=2013
当a+2012=2013,即a=1时基消
a^2+a+2011=1+1+2011=2013=a+2012
根据集合的唯伏铅一性,所以a≠1
所以a^2+a+2011=2013
a^2+a-2=0
(a+2)(a-1)=0
解得a=-2或a=1(不合)
当a=-2时,a+2012=-2+2012=2010
a^2+a+2011=4-2+2011=2013
这时集合A={2010、2012、2013}
综上可得搏厅知a值为-2
❿ 集合公式是什么呢
集合公式是A∩B={x:R(x)}={x:P(x)andQ(x)}={x:x∈Aandx∈B}。当A={x:P(x)}和B={y:Q(y)}为集合的时候,集合A和B的交或交集,写作C=A∩B。因为性质P(x)和x∈A,Q(x)和x∈B等价,所以A∩B={x:R(x)}={x:P(x)andQ(x)}={x:x∈Aandx∈B}成立,也就是说A和B的交集就是,A和B共有元素的集合。
集合的特性
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合。集合有以下性质:若薯升液A包含于B,则A∩B=A,A∪B=B集合的表示方法:常用的有数物列举法和描述法。1.列举法:常用于表示有限集合,把集合笑拦中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}。