‘壹’ Canny边缘检测
Canny边缘检测是一种使用多种边缘检测算法检测边缘的方法。由John F.Canny于1986年提出,并在论文中有详尽的描述。
1)去噪。噪声会影响边缘检测的准确度。通常采用高斯滤波去除图像中的噪声。滤波器的核越大,边缘信息对噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加。通常一个5 X 5的核能满足大多数情况。
2)计算梯度的幅度与方向。梯度的方向与边缘的方向是垂直的,通常就取近似值为·水平、垂直、对角线等八个不同的方向。
3)非极大值抑制,即适当地让边缘变瘦。在获得了梯度的幅度和方向后,遍历图像中的像素点,去除所有非边缘的点。具体实现上,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,如果是,则保贺尘留该点;如果不是则抑制(归零)。
4)确定边缘。用双阈值算法确定最终的边缘信息。完成之前三步骤后,图像的强边缘已经在当前获取的边缘图像内。但一些虚边缘可能也在边缘图像内,这些虚边缘此拍仿可能是真实的图像产生的,也可能是由于噪声产生的(必须将其剔除)。
设置两个阈值,其中一个为高阈值maxVal,另一个为低阈值minVal。根据当前边缘像素的梯度值与这两个阈值之间的森纤关系,判断边缘的属性。如果当前边缘像素的梯度值不小于maxVal,则将当前边缘像素标记为强边缘;如果介于maxVal与minVal之间,则标记为弱边缘(先保留);如果小于minVal,则抑制当前边缘像素。之后再判断虚边缘是否与强边缘有连接,有连接,则处理为边缘;无连接则抑制。
OpenCV提供了cv2.Canny()来实现边缘检测:
dst : 为计算得到的边缘图像
image: 为8位输入图像
threshold1: 表示处理过程中的的第一个阈值
threshold2: 表示处理过程中的的第二个阈值
apertureSize: 表示Sobel算子的孔径大小。
L2gradient: 为计算图像梯度幅度的标识。其默认值是False。如果为True,则使用更精确的L2范数进行计算,否则使用L1范数。
例如:
‘贰’ 图片处理-opencv-10.图像锐化与边缘检测
Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。
Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3 3模板对区域内的像素值进行计算,而Robert算子的模板为2 2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。
dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
RSobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。
dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示
dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:判断图像中心像素灰度值与它周围其他像素的灰度值,如果中心像素的灰度更高,则提升中心像素的灰度;反之降低中心像素的灰度,从而实现图像锐化操作。在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整。
Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。
dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])
由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个33的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显。Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3*3滤波器实现图像边缘提取更推荐使用Scharr算子
Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是配合Sobel算子的运算而存在的。Scharr算子的函数原型如下所示,和Sobel算子几乎一致,只是没有ksize参数.
dst = Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]])
Canny边缘检测算子(多级边缘检测算法)是一种被广泛应用于边缘检测的标准算法,其目标是找到一个最优的边缘检测解或找寻一幅图像中灰度强度变化最强的位置。最优边缘检测主要通过低错误率、高定位性和最小响应三个标准进行评价。
Canny算子的实现步骤如下:
edges = Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])
LOG(Laplacian of Gaussian)边缘检测算子也称为Marr&Hildreth算子,它根据图像的信噪比来求检测边缘的最优滤波器。该算法首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数,根据二阶导数的过零点来检测图像的边界,即通过检测滤波结果的零交叉(Zero crossings)来获得图像或物体的边缘。
LOG算子该综合考虑了对噪声的抑制和对边缘的检测两个方面,并且把Gauss平滑滤波器和Laplacian锐化滤波器结合了起来,先平滑掉噪声,再进行边缘检测,所以效果会更好。 该算子与视觉生理中的数学模型相似,因此在图像处理领域中得到了广泛的应用。它具有抗干扰能力强,边界定位精度高,边缘连续性好,能有效提取对比度弱的边界等特点。
‘叁’ 图像卷积与边缘检测
边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
先灰度化,再用低通滤波器降噪,用高通滤波器提取边缘,最后二值化。
低通滤波器见前面我发布的图像预处理,下面讲的都是高通滤波器。
为了提取到图像的边缘,我们需要滤波器的帮助。这类滤波器以矩阵的形式存在,通常被称为卷积核,就是一些值网格,能够对图像进行修改。
对于图像的每一个像素点,计算它的邻岁磨握域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。这种计算被称为图像卷积。
滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。
索贝尔过滤器常用于边缘检测和发现图像中的强度模式。向图像中应用索贝尔过滤器就相当于沿着 x 或 y 方向求图像的(近似)导数。
Sobel_x和 Sobel_y的运算符分别如下所示:
Laplace算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的像素灰度差值时比较合适。
Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。
了解更多
Canny边缘检测是一种非常流行的边缘检测算法,是John Canny在1986年提出的。它是一个多阶段的算法,即由多个步骤构成。
首先,图像降噪。我们知道梯度算子可以用于增强图像,本质上是通过增强边缘轮廓来实现的,也就是说是可以检测到边缘的。但是,它们受噪声的影响都很大。那么,我们第一步就是想到要先去除噪声,因为噪声就是灰度变化很大乎庆的地方,所以容易被识别为伪边缘。
第二步,计算图像梯度,得到可能边缘。计算图像梯度能够得到图像的边缘,因为梯度是灰度变化明显的地方,而边缘也是灰度变化明显的地方。当然这一步只能得到可能的边缘。因为灰度变化的地方可能是边缘,也可能不是边缘。这一步就有了所有可能是边缘的集合。
第三步,非极大值抑制。通常灰度变化的地方都比较集中,将局部范围内的梯度方向上,灰度变化最大的保留下来,其它的不保留,这样可以剔除掉一大部分的点。将有多个像素宽的边缘变成一个单像素宽的边缘。即“胖边缘”变成“瘦边缘”。
第四步,双阈值筛选。通过非极大值抑制后,仍然有很多的可能边缘点,进一步的设置一个双阈值,即低阈值(low),高阈值(high)。灰度变游首化大于high的,设置为强边缘像素,低于low的,剔除。在low和high之间的设置为弱边缘。进一步判断,如果其领域内有强边缘像素,保留,如果没有,剔除。这样做的目的是只保留强边缘轮廓的话,有些边缘可能不闭合,需要从满足low和high之间的点进行补充,使得边缘尽可能的闭合。
‘肆’ Canny边缘检测算法的步骤和理解
姓名:高强 学号:17011210057
【嵌牛导读】:本文主要介绍Canny图像边缘检测算法的步骤和对各个步骤的理解
【嵌牛鼻子】:边缘检测,Canny,步骤
【嵌牛提问】:canny边缘检测算法的步骤是怎样?
【嵌牛正文】:
1. Canny边缘检测算法的提出和指标
Canny算法是John Canny在1986年提出的,那年John Canny 28岁,该文章发表在PAMI顶级期刊上(1986.IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 8, 1986 , pp 679-698 )。
Canny算子与Marr(LoG)边缘检测方法类似(Marr大爷号称计算机视觉之父),也属于是先平滑后求导数的方法。John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣的三个指标:
(1)好的信噪比 ,即将非边缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低;
(2)高的定位性能 ,即检测出的边缘点要尽可能在实际尘友边缘的中心;
(3)对单一边缘仅有唯一响应 ,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制。
用一句话说,就是希望在提高对景物边缘的敏感性的同时,可以抑制噪声的方法才是好的边缘提取方法。
2. Canny边缘检测算法的步骤 :
(1)图像高斯滤波进行降噪处理。
(2)用一阶偏导的有限差分计算梯度告森的幅值和方向。
(3)对梯度幅值进行非极大值抑制。
(4)用双阈值算法检测和连接边缘。
3. Canny边缘检测算法的通俗理解
Canny算法的目的就是边缘检测,何为边缘?图象局部区域亮度变化显着的部分,对于灰度图像来说,也就是灰度值有一个明显变化,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。那么袜兄亩怎么表征这种灰度值的变化呢?这里想到的就是导数微分,导数就是表征变化率的,但是数字图像都是离散的,也就是导数肯定会用差分来代替。也就是具体算法中的步骤2,用相邻像素的差分来计算梯度的大小和方向。但是在真实的图像中,一般会有噪声,噪声会影响梯度的计算,所以步骤1要先滤波。理论上将图像梯度幅值的元素值越大,说明图像中该点的梯度值越大,但这不能说明该点就是边缘。在Canny算法中,步骤3的非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点的局部最大值,沿着梯度方向,比较它前面和后面的梯度值,若梯度值局部最大则有可能为边缘像素,进行保留,否则就进行抑制。步骤4是一个典型算法,有时候我们并不能一刀切,也就是超过阈值的都是边缘点,而是设两个阈值,希望在高阈值和低阈值之间的点也可能是边缘点,而且这些点最好在高阈值的附近,也就是说这些中间阈值的点是高阈值边缘点的一种延伸。所以步骤4用了双阈值来进行检测和连接边缘。双阈值有时也叫做滞后阈值。
‘伍’ 图像边缘检测算法有哪些
早期的有边缘算子法、曲线拟合法、模板匹配法、门限化法。近年来又有许多新的边缘检测的算法:小波变换、小波包的边缘检测等,基于数学形态学、模糊理论和神经网络的边缘检测算法等。
‘陆’ Matlab边缘检测问题
用mesh语句似乎可以,具体也不了解你的情况,感觉怪怪的,发一段我以前些的程序,用罗伯特算子写的,把算子一改就是sobel了。两种边缘检测近似算法奉上:
clc
close all
clear all
%%%生成高斯平滑滤波模板%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
hg=zeros(3,3); %设定高斯平滑滤波模板的大小为3*3
delta=0.5;
for x=1:1:3
for y=1:1:3
u=x-2;
v=y-2;
hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2));
end
end
h=hg/sum(hg(:));
%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%读入图像%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
f = imread('1111.tif'); % 读入图像文件
f=rgb2gray(im2double(f));
imshow(f)
title('原始图像');
[m,n]=size(f);
ftemp=zeros(m,n);
rowhigh=m-1;
colhigh=n-1;
%%%高斯滤波%%%
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
A=h.*mod;
ftemp(x,y)=sum(A(:));
end
end
f=ftemp
figure,imshow(f)
title('通过高斯滤波器后的图像');
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%利用roberts算子进行边缘检测%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sx=[-1 -2 -1;0 0 0;1 2 1];
sy=[-1 0 1;-2 0 2;-1 0 1];
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
fsx=sx.*mod;
fsy=sy.*mod;
ftemp(x,y)=sqrt((sum(fsx(:)))^2+(sum(fsy(:)))^2);
end
end
fr=im2uint8(ftemp);
figure,imshow(fr)
title('用roberts算子边缘检测的原始图像');
%%%域值分割%%%
TH1=60; %设定阈值
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
if (fr(x,y)>=TH1)&((fr(x,y-1) <= fr(x,y)) & (fr(x,y) > fr(x,y+1)) )
fr(x,y)=200;
elseif(fr(x,y)>=TH1)&( (fr(x-1,y) <=fr(x,y)) & (fr(x,y) >fr(x+1,y)))
fr(x,y)=200;
else fr(x,y)=50;
end
end
end
figure,imshow(fr)
title('用roberts算子边缘检测并细化后的图像');
%%%%%%%%%%%%%%%%%%%%%%%%%%
利用第一种近似算法进行边缘检测%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%3*3的sobel算子%%%%%%%%
sx=[-1 -2 -1;0 0 0;1 2 1];
sy=[-1 0 1;-2 0 2;-1 0 1];
%sx=[0 1 2;-1 0 1;-2 -1 0];
%sy=[-2 -1 0;-1 0 1;0 1 2];
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
fsx=sx.*mod;
fsy=sy.*mod;
ftemp(x,y)=abs(sum(fsx(:)))+abs(sum(fsy(:)));
end
end
fs=im2uint8(ftemp);
figure,imshow(fs)
title('用第一种近似算法进行边缘检测的原始图像');
%%%域值分割%%%
TH2=200; %设定阈值
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
if (fs(x,y)>=TH2)&((fs(x,y-1) <= fs(x,y)) & (fs(x,y) > fs(x,y+1)) )
fs(x,y)=200;
elseif(fs(x,y)>=TH2)&( (fs(x-1,y) <=fs(x,y)) & (fs(x,y) >fs(x+1,y)))
fs(x,y)=200;
else fs(x,y)=50;
end
end
end
figure,imshow(fs)
title('采用第一种近似算法进行边缘检测后的图像');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%利用第二种近似算法进行边缘检测%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%3*3的sobel算子%%%%%%%%
sx=[-1 -2 -1;0 0 0;1 2 1];
sy=[-1 0 1;-2 0 2;-1 0 1];
%sx=[0 1 2;-1 0 1;-2 -1 0];
%sy=[-2 -1 0;-1 0 1;0 1 2];
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
fsx=sx.*mod;
fsy=sy.*mod;
ftemp(x,y)=max(abs(sum(fsx(:))),abs(sum(fsy(:))));
end
end
fs=im2uint8(ftemp);
figure,imshow(fs)
title('用第二种近似算法进行边缘检测的原始图像');
%%%域值分割%%%
TH2=200; %设定阈值
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
if (fs(x,y)>=TH2)&((fs(x,y-1) <= fs(x,y)) & (fs(x,y) > fs(x,y+1)) )
fs(x,y)=200;
elseif(fs(x,y)>=TH2)&( (fs(x-1,y) <=fs(x,y)) & (fs(x,y) >fs(x+1,y)))
fs(x,y)=200;
else fs(x,y)=50;
end
end
end
figure,imshow(fs)
title('采用第二种近似算法进行边缘检测后的图像');
‘柒’ 边缘检测的Sobel边缘检测
Soble边缘检测算法比较简,实际应用中效率比canny边缘检测效率要高孝闭陆巧顷,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,尤其是对效率要求较高,而对细纹理不太关心的时候。
Soble边缘检测通常带有方向性,可以只检测竖直边缘或垂直边缘或都检测。
所以我们先定义两个梯度方向的系数:
kx=0;ky=1;% horizontal kx=1;ky=0;% vertical kx=1;ky=1;% both
然后我们来计算梯度图像,我们知道边缘点其实就是图像中灰度跳变剧烈的点,所以先计算梯度图像,然后将梯度图像中较亮的那一部分提取出来就是简单的边缘部分。
Sobel算子用了一个3*3的滤波器来对图像进行滤波从而得到梯度图像,这里面不再态手详细描述怎样进行滤波及它们的意义等。
竖起方向的滤波器:y_mask=op = [-1 -2 -1;0 0 0;1 2 1]/8;
水平方向的滤波器:op的转置:x_mask=op’;
定义好滤波器后,我们就开始分别求垂直和竖起方向上的梯度图像。用滤波器与图像进行卷积即可:
bx = abs(filter2(x_mask,a)); by = abs(filter2(y_mask,a));
上面bx为水平方向上的梯度图像,by为垂直方向上的梯度图像。为了更清楚的说明算法过程,下面给出一张示例图像的梯度图像。
‘捌’ 怎样理解微分算子可以检测图像的边界
常见的边缘检测算子有Roberts算子、Prewitt算子、Sobel算子、Marr-Hidreth边缘检测以及canny算子等。
一、利用梯度进行哪汪早边缘检测
1、Roberts算子采用对角线方向相邻两像素之差近似的梯度幅值来检测边缘。该算子定位较准确,但对噪声比较敏感,检测水平和竖直边缘效果好于斜向李雀边缘。
2、Sobel算子根据图陵孝像的像素点上下、左右邻点灰度加权差在边缘处达到极值这一特点来检测边缘。该算子对噪声有较好的平滑作用,能提供建准确的边缘方向信息,但是边缘定位精度不高。
3、Prewitt算子边缘检测的思路与Sobel算子类似,也是在一个掩模中定义微分运算。算子对噪声具有平滑作用,同样定位精度不够高。
二、更为先进的边缘检测技术
1、Marr-Hildreth算法(拉普拉斯算子)
(1)采用高斯低通滤波器对图像进行滤波;
(2)采用拉普拉斯模板对进行卷积;
(3)找到步骤(2)所得图像的零交叉。
该算子是二阶微分算子,利用边缘点处二阶导函数出现零交叉原理来检测图像的边缘。对灰度突变及噪声较敏感,不具有方向性,不能获得图像边缘的方向信息。
2、Canny算子
Canny边缘检测算法步骤:
(1)用一个高斯滤波器平滑输入图像
(2)计算梯度幅值图像和角度图像
(3)对梯度幅值图像进行非最大抑制
(4)用双阈值处理和连接分析来检测并连接边缘
Canny算子是上述中效果最好的算子,该算子去噪能力强,在连续性、细度和笔直度等线的质量方面也很出众。但是Canny算子的性能带来的问题是:连接起来更复杂、执行时间较长。
综上所述,在实际工业生产中,要求实时性较高的情况下,通常采用阈值梯度的方法;当对质量要求较高时,可选择更为先进的方法,尤其是Canny算子。
‘玖’ canny算法的算法的实现步骤
Canny边缘检测算法可以分为以下5个步骤: 应用高斯滤波来平滑图像,目的是去除噪声 找寻图像的强度梯度(intensity gradients) 应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是) 应用双阈值的方法来决定可能的(潜在的)边界 利用滞后技术来跟踪边界 1. 图像平滑(去噪声)
任何边缘检测算法都不可能在未经处理的原始数据上很好地工作,所以第一步是对原始数据与高斯 mask 作卷积,得到的图像与原始图像相比有些轻微的模糊(blurred)。这样,单独的一个像素噪声在经过高斯平滑的图像上变得几乎没有影响。以下为一个5X5高斯滤波器(高斯核,标准差delta=1.4),其中A为原始图像,B为平滑后的图像。
2. 寻找图像中的强度梯度
Canny算法的基本思想是找寻一幅图相中灰度强度变化最强的位置。所谓变化最强,即指梯度方向。平滑后的图像中每个像素点的梯度可以由Sobel算子(一种卷积运算)来获得(opencv中有封装好的函数,可以求图像中每个像素点的n阶导数)。首先,利用如下的核来分别求得沿水平(x)和垂直(y)方向的梯度G_X和G_Y。
K_{GX} = [-1 0 1 ; -2 0 2 ; -1 0 1], K_{GY} = {1 2 1 ; 0 0 0 ; -1 -2 -1}
之后便可利用公式来求得每一个像素点的梯度度量值(gradient magnitude,可能翻译得不准确)。
,有时为了计算简便,也会使用G_X和G_Y的无穷大范数来代替二范数。把平滑后的图像中的每一个点用G代替,可以获得如下图像。从下图可以看出,在变化剧烈的地方(边界处),将获得较大的梯度度量值G,对应的颜色为白色。然而,这些边界通常非常粗,难以标定边界的真正位置。为了做到这一点(参考非极大抑制Non-maximum suppression一节),还必须存储梯度方向,其公式如下图所示。也就是说在这一步我们会存数两块数据,一是梯度的强度信息,另一个是梯度的方向信息。
3. 非极大抑制Non-maximum suppression
这一步的目的是将模糊(blurred)的边界变得清晰(sharp)。通俗的讲,就是保留了每个像素点上梯度强度的极大值,而删掉其他的值。对于每个像素点,进行如下操作:
a) 将其梯度方向近似为以下值中的一个(0,45,90,135,180,225,270,315)(即上下左右和45度方向)
b) 比较该像素点,和其梯度方向正负方向的像素点的梯度强度
c) 如果该像素点梯度强度最大则保留,否则抑制(删除,即置为0)
为了更好的解释这个概念,看下图。
图中的数字代表了像素点的梯度强度,箭头方向代表了梯度方向。以第二排第三个像素点为例,由于梯度方向向上,则将这一点的强度(7)与其上下两个像素点的强度(5和4)比较,由于这一点强度最大,则保留。处理后效果如下图所示。
上图中,可以想象,边界处的梯度方向总是指向垂直于边界的方向,即最后会保留一条边界处最亮的一条细线。
4.双阈值(Double Thresholding)
经过非极大抑制后图像中仍然有很多噪声点。Canny算法中应用了一种叫双阈值的技术。即设定一个阈值上界和阈值下界(opencv中通常由人为指定的),图像中的像素点如果大于阈值上界则认为必然是边界(称为强边界,strong edge),小于阈值下界则认为必然不是边界,两者之间的则认为是候选项(称为弱边界,weak edge),需进行进一步处理。经过双阈值处理的图像如下图所示
上图中右侧强边界用白色表示,弱边界用灰色表示。
5.利用滞后的边界跟踪
这里就不细作解释了。大体思想是,和强边界相连的弱边界认为是边界,其他的弱边界则被抑制。
以上内容均翻译自参考文献【4】
上一个网络版本:
图像中的边缘可能会指向不同的方向,所以 Canny 算法使用 4 个 掩模(mask) 检测水平、垂直以及对角线方向的边缘。原始图像与每个 mask 所作的卷积都存储起来。对于每个点我们都标识在这个点上的最大值以及生成的边缘的方向。这样我们就从原始图像生成了图像中每个点亮度梯度图以及亮度梯度的方向。以下两个公式分别求取高斯滤波后图像的梯度幅值及其方向的表达式。这一步,也叫称为非极大抑制(Non-maximum suppression)。
3. 在图像中跟踪边缘
较高的亮度梯度比较有可能是边缘,但是没有一个确切的值来限定多大的亮度梯度是边缘多大又不是,所以 Canny 使用了滞后阈值。
滞后阈值(Hysteresis thresholding) 需要两个阈值,即高阈值与低阈值。假设图像中的重要边缘都是连续的曲线,这样我们就可以跟踪给定曲线中模糊的部分,并且避免将没有组成曲线 的噪声像素当成边缘。所以我们从一个较大的阈值开始,这将标识出我们比较确信的真实边缘,使用前面导出的方向信息,我们从这些真正的边缘开始在图像中跟踪 整个的边缘。在跟踪的时候,我们使用一个较小的阈值,这样就可以跟踪曲线的模糊部分直到我们回到起点。
一旦这个过程完成,我们就得到了一个二值图像,每点表示是否是一个边缘点。
一个获得亚像素精度边缘的改进实现是在梯度方向检测二阶方向导数的过零点,它在梯度方向的三阶方向导数满足符号条件。
滞后阈值也可以用于亚像素边缘检测。