导航:首页 > 源码编译 > 二分查找算法数据结构完整代码

二分查找算法数据结构完整代码

发布时间:2023-05-04 04:30:36

‘壹’ 二分查找法的具体算法

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。二分搜索法的应用极其广泛,而且它的思想易于理解,但是要写一个正确的二分搜索算法也不是一件简单的事。第一个二分搜索算法早在1946年就出现了,但是第一个完全正确的二分搜索算法直到1962年才出现。Bentley在他的着作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的,我们可用C++描述如下:

template<class Type>

int BinarySearch(Type a[],const Type& x,int n)

{

int left=0;

int right=n-1;

while(left<=right){

int middle=(left+right)/2;

if (x==a[middle]) return middle;

if (x>a[middle]) left=middle+1;

else right=middle-1;

}

return -1;

}

模板函数BinarySearch在a[0]<=a[1]<=...<=a[n-1]共n个升序排列的元素中搜索x,找到x时返回其在数组中的位置,否则返回-1。容易看出,每执行一次while循环,待搜索数组的大小减少一半,因此整个算法在最坏情况下的时间复杂度为O(log n)。在数据量很大的时候,它的线性查找在时间复杂度上的优劣一目了然。

‘贰’ 用递归方法写出有序数组的二分查找算法

什么是二分查找?

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

二分查找优缺点

优点是比较次数少,查找速度快,平均性能好;

其缺点是要求待查表为有序表,且插入删除困难。

因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
使用条件:查找序列是顺序结构,有序。


过程

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

利用循环的方式实现二分法查找

public class BinarySearch {
public static void main(String[] args) {
// 生成一个随机数组 int[] array = suiji();
// 对随机数组排序 Arrays.sort(array);
System.out.println("产生的随机数组为: " + Arrays.toString(array));

System.out.println("要进行查找的值: ");
Scanner input = new Scanner(System.in);
// 进行查找的目标值 int aim = input.nextInt();

// 使用二分法查找 int index = binarySearch(array, aim);
System.out.println("查找的值的索引位置: " + index);

}

/** * 生成一个随机数组 *
* @return 返回值,返回一个随机数组 */
private static int[] suiji() {
// random.nextInt(n)+m 返回m到m+n-1之间的随机数 int n = new Random().nextInt(6) + 5;
int[] array = new int[n];
// 循环遍历为数组赋值 for (int i = 0; i < array.length; i++) {
array[i] = new Random().nextInt(100);
}
return array;
}

/** * 二分法查找 ---循环的方式实现 *
* @param array 要查找的数组 * @param aim 要查找的值 * @return 返回值,成功返回索引,失败返回-1 */
private static int binarySearch(int[] array, int aim) {
// 数组最小索引值 int left = 0;
// 数组最大索引值 int right = array.length - 1;
int mid;
while (left <= right) {
mid = (left + right) / 2;
// 若查找数值比中间值小,则以整个查找范围的前半部分作为新的查找范围 if (aim < array[mid]) {
right = mid - 1;
// 若查找数值比中间值大,则以整个查找范围的后半部分作为新的查找范围 } else if (aim > array[mid]) {
left = mid + 1;
// 若查找数据与中间元素值正好相等,则放回中间元素值的索引 } else {
return mid;
}
}
return -1;
}}
运行结果演示:

总结:

递归相较于循环,代码比较简洁,但是时间和空间消耗比较大,效率低。在实际的学习与工作中,根据情况选择使用。通常我们如果使用循环实现代码只要不是太繁琐都选择循环的方式实现~

‘叁’ 数据结构折半查找算法的方法

041424344#include <stdio.h> int Dichotomy(int a[],int _value,int n){ // 二分法(也称折半查找法) int index=0; // 当前数组的首元素下标 int current=n-1; // 数组当前的大小 int k; // 当前数组中间的数的下标 while (index<current) { // 开始二分法查找 k=(index+current)/2; // 除以2代表得到当前数组中间的数的下标 if(a[k]==_value) return k; // 返回要查找的值_value所在的下标 // 否则比较要查找的值_value是在折半后的前半部分还是后半部分 if(a[k]<_value){ // 说明要查找的值在折半后的后半部分 index=k+1; // 令index指向后半部分数组的首元素 } else{ // 说明要查找的值在折半后的前半部分 current=k-1; // 令current等于前半部分数组的长度 } } return -1; // 返回-1代表没有查找到该值(_value)}void main(){ int arr[5]={2,12,45,87,95};// 前提是一组数组必须是有序数对(即按小到大或大到小) if(Dichotomy(arr,87,5)!=-1) printf("87在数组中对应的下标是:%d\n",Dichotomy(arr,87,5)); else printf("没有找到指定的值\n");}// 用一句话概括二分法(折半查找法)的思想就是:在一组有序对数组中反复折半后得到中间数组的下标,然后再进行是否与要查找的值相等,若相等则返回当前要查找的值的下标。 那么,上面的代码的注释与下面一一对应,它在执行的结果会产生两种情况,第一种,不存在。第二种,存在。先来说说第一种情况 不存在: 1.如果给定要查找的值_value大于数组中最大的数,则index不断增大从而促使while循环终止 2.如果给定要查找的值_value小于数组中最小的数,则current不断减少从而促使while循环终止(你自己可以动手在纸上画一个数组,然后思路跟着代码走就会知道或设单步调试亦可) 第二种情况 存在: 1.要查找的数_value正好是在数组中间.那么就执行了一次循环,当然这也是最理想的效果. 否则反复执行2和3:2.如果要查找的数_value不存在中间,则判断它是否大于中间的数还是小于中间的数,如果小于中间的数则说明_value应该在数组中间的前半部分,那么current=k-1(即令current等于前半部分的长度),然后仍然采取折半的方法,反复此操作直至找到该数的下标为止. 3.如果要查找的数_value不存在中间,则判断它是否大于中间的数还是小于中间的数,如果大于中间的数则说明_value应该在数组中间的后半部分,那么index=k+1(即令index指向后半部分的第一个下标),然后仍然采取折半的方法,反复此操作直至找到该数的下标为止.

‘肆’ 什么叫java中的二分查找法

1、算法概念。

二分查找算法也称为折半搜索、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。请注意这种算法是建立在有序数组基础上的。

2、算法思想。

①搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

②如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

③如果在某一步骤数组为空,则代表找不到。

这种搜索算法每一次比较都使搜索范围缩小一半。

3、实现思路。

①找出位于数组中间的值,并存放在一个变量中(为了下面的说明,变量暂时命名为temp);

②需要找到的key和temp进行比较;

③如果key值大于temp,则把数组中间位置作为下一次计算的起点;重复① ②。

④如果key值小于temp,则把数组中间位置作为下一次计算的终点;重复① ② ③。

⑤如果key值等于temp,则返回数组下标,完成查找。

4、实现代码。

/**
*description:二分查找。
*@paramarray需要查找的有序数组
*@paramfrom起始下标
*@paramto终止下标
*@paramkey需要查找的关键字
*@return
*/
publicstatic<EextendsComparable<E>>intbinarySearch(E[]array,intfrom,intto,Ekey)throwsException{
if(from<0||to<0){
("paramsfrom&lengthmustlargerthan0.");
}
if(from<=to){
intmiddle=(from>>>1)+(to>>>1);//右移即除2
Etemp=array[middle];
if(temp.compareTo(key)>0){
to=middle-1;
}elseif(temp.compareTo(key)<0){
from=middle+1;
}else{
returnmiddle;
}
}
returnbinarySearch(array,from,to,key);
}

‘伍’ 如下为二分查找的非递归算法,试将其填写完整。

递归算法是一种分而治之的方法,简单的说就是调用自己本身;能把复杂的问题化为简单腊培段来解决;但是执行的效率比较低,所以一般分析问题轮誉用递归,实际解决问题中源用非递归。

‘陆’ C#二分查找算法

二分查找的基本思想是:(设R[low..high]是当前的查找区间)
(1)首先确定该区间的中点位置:mid=(low+high)/2
(2)然后将待晌衫闷查的K值与R[mid].key比较:若相等宴弯,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找
//
Source:
public
int
search(int[]
q)
{
int
i,
low
=
0,
high
=
q.Length
-
1,
middle;
Console.Write("请输入想要查找的数字:");
i=int.Parse(Console.ReadLine());
while
(low
<=
high)
{
middle
=
(low
+
high)
/
2;
if
(i
==
q[middle])return
i;
if
(i
<
q[middle])high
=
middle
-
1;
else
low
=
middle
+
1;
}
throw
new
Exception("数组中不存在这个数塌肢。");
}

‘柒’ 二分查找的代码怎么写

以下是四个二分查找代码的 Python 实厅镇唤现:
①在扮凯升序数组中查找第一个>=x的元素的下标,查找右边界
def binary_search_right_bound_ascending(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) // 2
if arr[mid] < x:
left = mid + 1
else:
right = mid - 1
if left >= len(arr) or arr[left] != x:
return -1
return left

②在降序数组中查找第一个>=x的元素的下标,查找右边界
def binary_search_right_bound_descending(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) // 2
if arr[mid] > x:
left = mid + 1
else:
right = mid - 1
if left >= len(arr) or arr[left] != x:
return -1
return left

③在升序数组中查找第一个<=x的元素的下标,查找右边界
def binary_search_left_bound_ascending(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) /旅纯/ 2
if arr[mid] > x:
right = mid - 1
else:
left = mid + 1
if right < 0 or arr[right] != x:
return -1
return right

④在降序数组中查找第一个<=x的元素的下标,查找右边界
def binary_search_left_bound_descending(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) // 2
if arr[mid] < x:
right = mid - 1
else:
left = mid + 1
if right < 0 or arr[right] != x:
return -1
return right

注意:在所有代码中,如果找不到符合条件的元素,会返回 -1。

‘捌’ 二分查找的算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度无非就是while循环的次数!
总共有n个元素,
渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2为底,n的对数)
所以时间复杂度可以表示O()=O(logn)
下面提供一段二分查找实现的伪代码:
BinarySearch(max,min,des)
mid-<(max+min)/2
while(min<=max)
mid=(min+max)/2
if mid=des then
return mid
elseif mid >des then
max=mid-1
else
min=mid+1
return max
折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。如 果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。如果x>a[n/2],则我们只要在数组a的右 半部继续搜索x。

‘玖’ 用二分查找算法查询某学生成绩

/*这是我自己写的二分查找算法,用递归实现:在已按非降序排序的数组arr[0..length-1]中从位置startPos到endPos查找num这个值,返回值为下标的值,若没找到则返回-1。*/
int binarySearch(int *arr,int num,int startPos,int endPos)
{
if((startPos >= endPos) && (*(arr+startPos) != num))
{
return -1;
}
else
{
int j = (startPos+endPos)/2;

if(*(arr+j) == num)
{
return j;
}
else
{
if(*(arr+j) > num)
{
return binarySearch(arr,num,startPos,j-1);
}
else
{
return binarySearch(arr,num,j+1,endPos);
}
}
}
}

‘拾’ C语言编写数据结构查找算法

实验五 查找的实现
一、 实验目的
1.通过实验掌握查找的基本概念;
2.掌握顺序查找算法与实现;
3.掌握折半查找算法与实现。
二、 实验要求
1. 认真阅读和掌握本实验的参考程序。
2. 保存程序的运行结果,并结合程序进行分析。
三、 实验内容
1、建立一个线性表,对表中数据元素存放的先后次序没有任何要求。输入待查数据元素的关键字进行查找。为了简化算法,数据元素只含一个整型关键字字段,数据元素的其余数据部分忽略不考虑。建议采用前哨的作用,以提高查找效率。
2、查找表的存储结构为有序表,输入待查数据元素的关键字利用折半查找方法进行查找。此程序中要求对整型量关键字数据的输入按从小到大排序输入。
一、顺序查找
顺序查找代码:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("请输入您要输入的数据的个数:\n");
scanf("%d",&(s->length));
printf("请输入您想输入的%d个数据;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所输入的数据为:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
inti=0;
s->r[s->length].key=k;
while(s->r[i].key!=k)
{

i++;
}
if(i==s->length)
{
printf("该表中没有您要查找的数据!\n");
return-1;
}
else
returni+1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("请输入您想要查找的数据的关键字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的数据的位置为:\n\n%d\n\n",keyplace);
return2;
}
顺序查找的运行结果:
二、折半查找
折半查找代码:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("请输入您要输入的数据的个数:\n");
scanf("%d",&(s->length));
printf("请由大到小输入%d个您想输入的个数据;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所输入的数据为:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
intlow,mid,high;
low=0;
high=s->length-1;
while(low<=high)
{
mid=(low+high)/2;
if(s->r[mid].key==k)
returnmid+1;
elseif(s->r[mid].key>k)
high=mid-1;
else
low=mid+1;
}
printf("该表中没有您要查找的数据!\n");
return-1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("请输入您想要查找的数据的关键字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的数据的位置为:\n\n%d\n\n",keyplace);
return2;
}
折半查找运行结果:
三、实验总结:
该实验使用了两种查找数据的方法(顺序查找和折半查找),这两种方法的不同之处在于查找方式和过程不同,线性表的创建完全相同,程序较短,结果也一目了然。

阅读全文

与二分查找算法数据结构完整代码相关的资料

热点内容
华为笔记本电脑怎么安装抖音app 浏览:408
阿里云国际版试用的服务器怎么搞 浏览:893
java正则表达式工具 浏览:158
oa服务器怎么设置ftp 浏览:8
安卓如何安装obb 浏览:440
QQ聊天记录journal文件夹 浏览:118
苹果公司云服务器地址 浏览:85
加密记事本手机 浏览:437
汽车压缩机变频阀 浏览:95
域外服务器是什么意思 浏览:639
大众点评服务器怎么老卡顿 浏览:556
javavector与list的区别 浏览:316
java初始化类数组 浏览:303
java字符串转换成json对象 浏览:647
android非阻塞socket 浏览:358
编译系统概念 浏览:452
天眼通app能做什么 浏览:557
魅族手机怎么加密图库 浏览:8
rpa编译器 浏览:572
车载云服务器记录 浏览:740