❶ “四色定理”在实际中有什么应用
四色定理是图的着色问题的一个结果。图的着色本质是给图中的顶点贴标签(labeling),但是要满足一定的条件。“色”只是一种标签。
四色定理的描述虽然提到了地图,但是地图绘制并不需要四色定理:他只要着色,不需要用最少的颜色。实际画地图时一般不用四种颜色。
着色问题的应用,主要排程和分配问题上。
比如我有几个任务,每个任务都需要一天。而我知道其中几样任务是冲突的,不能安排在同一天完成。现在我希望四天完成。这就是四色问题了:所用的图以任务为顶点,冲突的任务间连边,用日期做颜色,对图着色。
再比如我有一些员工,我希望把他们分成四个小组。但是我知道其中几个员工互相之间有矛盾,不能安排在同一组。那么这又是四色问题:所用的图以员工为顶点为,矛盾的员工间连边,用组做颜色,对图着色。
四色定理说:如果上面提到的图是平面图(有高效算法判定),那么可能四天完成/可能分成四组。
❷ 四色定理是什么
四色定理的诞生过程
世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、着名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己肆渣的好友、着名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对唤渣话的出现,大大加快了对四色猜想证明的进程。1976年,在J. Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。
证明方法
证明方法将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程序和计算机独立的进行了复检。在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况。这一新证明裂链悄也使用了计算机,如果由人工来检查的话是不切实际的。
(不过最近,在一个叫“东陆论坛”的数学性论坛里看见一个推理性的图论证明。)
四色定理的重要
四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。
缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”
德·摩尔根:地图四色定理
地图四色定理最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。德•摩尔根(A,DeMorgan,1806~1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。他在信中简述了自己证明四色定理的设想与感受。一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。1976年美国数学家阿佩尔(K.Appel)与哈肯(W.Haken)宣告借助电子计算机获得了四色定理的证明,又为用计算机证明数学定理开拓了前景。以下摘录德•摩尔根致哈密顿信的主要部分,译自J. Fauve1 and J.Gray(eds.),The History of Mathematics :A Reader,pp. 597~598。
德·摩尔根致哈密顿的信(1852年10月23日)
我的一位学生今天请我解释一个我过去不知道,现在仍不甚了了的事实。他说如果任意划分一个图形并给各部分着上颜色,使任何具有公共边界的部分颜色不同,那么需要且仅需要四种颜色就够了。下图是需要四种颜色的例子。现在的问题是是否会出现需要五种或更多种颜色的情形。就我目前的理解,若四个不订分割的区域两两具有公共边界线,则其中三个必包围第四个而使其不与任何第五个区域相毗邻。这事实若能成立,那么用四种颜色即可为任何可能的地图着色,使除了在公共点外同种颜色不会。
现画出三个两两具有公共边界的区域ABC,那么似乎不可能再画第四个区域与其他三个区域的每一个都有公共边界,除非它包围了其中一个区域。但要证明这一点却很棘手,我也不能确定问题复杂的程度一对此您的意见如何呢?并且此事如果当真,难道从未有人注意过吗?我的学生说这是在给一幅英国地图着色时提出的猜测。我越想越觉得这是显然的事情。如果您能举出一个简单的反例来,说明我像一头蠢驴,那我只好重蹈史芬克斯的覆辙了……。
参考资料:http://ke..com/view/43945.html
❸ 什么是四色定理
四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。
很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。
不过这些恰恰是对图论严密性的考证和发展推动。计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。
(3)四色问题算法扩展阅读
四色定理证明的关键可以归纳为二维平面内两条直线相交的问题。
1、将地图上不同的区域用不同的点来表示。
2、点与点之间的连线用来表示地图上两区域之间的相邻逻辑关系,所以,线与线之间不可交叉(即不可存在交叉而没有公共交点的情况),否则就超越了二维平面,而这种平面暂时称它为逻辑平面,它只反应区域之间的关系,并不反应实际位置。
通过以上的变换处理,可以将对无穷尽的实际位置的讨论,变为有条理可归纳的逻辑关系的讨论,从而提供了简单书面证明的可行性。
❹ 四色问题C语言怎么解决
思路:建立数据结构,录入数据内容,遍历着色,输出第一个可行的着色方案。
下面就四个方面详细分析一下
首先分析数据结构:
对于地图,一个区块包含一个唯一编号数据(这个编号可以是地名,也可以是数字)用来区分该区块和其他区块的不同
另外要着色,还要考虑该区块和其他区块连接的情况
最后就是区块本身的颜色
羡让慎通过上面的分析,即可建立如下数据结构:
structarea{
intnID;//这里以数字替代兄敬名称,作为地块的唯一标识
intnColor;//用1,2,3,4表示不同的颜色,用0表示还没有着色
area*pNei;//邻接的区块
intnNei;//邻接区块的数量
};
然后需要录入数据,这个请依据具体的地图进行处理,撰写相应的录入函数,填入上面的数据结构
假设录好的数据如下:
structareacity[64];//假设已经录制好了数据,初始所有城市颜色都为0
数据录好后,我们可以如下方式进行遍历,尝试着色
遍历分为个模块:一个是遍历模块,一个是校验模块
校验模块依序检查所有的城市和其邻接城市是否存在同色的情况,是则返回false,否则返回true
遍历模块则逐个城市进行上色尝试
可以考虑递归
下面给一个递归的示例:
检测模块:
boolisOk(){
for(inti=0;i<64;i++)//假设有64个城市,其初始值和城市关系已经录制完毕
{
for(intj=0;j<city[i].nNei;j++){
if(nColor==city[i].pNei[j].nColor)
returnfalse;
}
}
returntrue;
}
遍历递归模块:
booladdcity(intnIndex){
if(nIndex>=64)returntrue;//所有城市都着色了,则返回成功
for(inti=1;i<=4;i++){
city[nIndex].nColor=i;
if(isOk()){//本城市的颜色找到了
if(addcity(nIndex+1)==true){//找下一个城市的颜色
滑瞎returntrue;
}else{//无法为下一个城市着色
continue;//更改本城市颜色
}
}
}
returnfalse;//没有一个颜色可行,返回上一级,重新寻找
}
调用的时候可以采用下面的方式:
if(addcity(0)==false){
printf("无法找到答案,四色定理错误! ");
}else{
printf("找到了答案,城市和着色结果如下: ");
for(inti=0;i<64;i++){
printf("city%03dcolor%d ",city[i].nID,city[i].nColor);
}
}
❺ 什么是四色定理
四色定理
四色地图的一个例子四色定理指出每个可以画出来的地图都可以至多用简猜4种颜色来上色,而且没有两个相接的区域会是相同的颜色。被称为相接的两个区域是指他们共有一段边界,而不是一个点。
这一定理最初是由Francis Guthrie在1853年提出的猜想。很明显,3种颜色不会满足条件,而且也不难证明5种颜色满足条件且绰绰有余。但是,直到1977年四色猜想才最终由Kenneth Appel 和Wolfgang Haken证明。他们得到了J. Koch在算法工作上的支持。
证明方法将地拦敏型图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程序和计算机独立的进行了复拿和检。在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况。这一新证明也使用了计算机,如果由人工来检查的话是不切实际的。
四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。参见实验数学。
缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”
❻ 四色定理 要Pascal
四色定理又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理是一个着名的数学定型宽唤理,通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。1976年借助电子计算机证明了四色问题,问题也终于成为定理,这是第一个借助计算机证明的定理。四色定理的本质就是在平面或者球面无法构造五个或者五个以上两两相连的区域。
虽然任何平面地图可以只用四个颜色着色,但是这个定理的应用却相当有限,因为现实中的地图常会出现飞地,即两个不连通的区域属于同一个国家的情况(例如美国的阿拉斯加州),而制作地图时我们仍会要求这两个区域被涂上同样的颜色,在这种情况下,只用四种颜色将会造成诸多巧运不便。
实际中用四种颜色着色的地图是不多见的,而且这些地图往往最少只需要三种颜色来卜凯染色。此外,即便地图能够只用四种颜色染色,为了区分起见,也会采用更多的颜色,以提示不同地区的差别。
❼ 四色问题
四色问题 和我们上一篇文章所提到的一笔画问题都是图论中的重要问题,这个问题的提出还要追溯到19世纪。
1852年,英国的大学生 兄弟在给英国地图上色时发现,想要让任意两个有公共边界的曲域颜色不同,似乎只需要四种颜色就够了。但是他们自己证明不了这个结论,于是向数学家 摩根 求教。摩根很容易证明出了三种颜色是不够的,需要至少三种颜色,但是并没有解决这个问题。而且当时这个问题并没有得到数学家们的重视。
直到1878年,英国数学家凯莱在《伦敦数学会文集山虚》上发表《论地图着色问题》的文章。由此才引起了数学界更大的注意。
因为很长一段时间内四色问题并没有得到较好的解决,于是数学家们退而求其次,希望先证明更弱的命题。
很快地,数学家们也得出了局唯闹两个更弱的结论:
1 .“五色问题”是成立的。
2 .对于有限个国家的地图着色问题,四种颜色是足够的。
这里我们发现,有时候退而求其次,先解决更弱的数学问题也是一种数学素养。
直到1976年,美国伊利诺伊大学的哈肯和阿佩尔根据前人的算法,在计算机的帮助下,耗时1200小时,最终证明了四色猜想。
四色问题是人类第一次使用计算机解决并证明数学问题,不桐罩得不说这是数学发展史上的一大步.