导航:首页 > 源码编译 > 数据挖掘案例源码

数据挖掘案例源码

发布时间:2023-05-09 14:43:21

⑴ 数据挖掘的经典算法

1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2. K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中
4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes)
10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。
关联规则规则定义
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: 尿布与啤酒的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在尿布与啤酒背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

⑵ 数据挖掘算法与生活中的应用案例

数据挖掘算法与生活中的应用案例

如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的着作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都不太好回答。但是,如果了解一点点数据挖掘的知识,你,或许会有柳暗花明的感觉。
本文,主要想简单介绍下数据挖掘中的算法,以及它包含的类型。然后,通过现实中触手可及的、活生生的案例,去诠释它的真实存在。 一般来说,数据挖掘的算法包含四种类型,即分类、预测、聚类、关联。前两种属于有监督学习,后两种属于无监督学习,属于描述性的模式识别和发现。
有监督学习有监督的学习,即存在目标变量,需要探索特征变量和目标变量之间的关系,在目标变量的监督下学习和优化算法。例如,信用评分模型就是典型的有监督学习,目标变量为“是否违约”。算法的目的在于研究特征变量(人口统计、资产属性等)和目标变量之间的关系。
分类算法分类算法和预测算法的最大区别在于,前者的目标变量是分类离散型(例如,是否逾期、是否肿瘤细胞、是否垃圾邮件等),后者的目标变量是连续型。一般而言,具体的分类算法包括,逻辑回归、决策树、KNN、贝叶斯判别、SVM、随机森林、神经网络等。
预测算法预测类算法,其目标变量一般是连续型变量。常见的算法,包括线性回归、回归树、神经网络、SVM等。
无监督学习无监督学习,即不存在目标变量,基于数据本身,去识别变量之间内在的模式和特征。例如关联分析,通过数据发现项目A和项目B之间的关联性。例如聚类分析,通过距离,将所有样本划分为几个稳定可区分的群体。这些都是在没有目标变量监督下的模式识别和分析。
聚类分析聚类的目的就是实现对样本的细分,使得同组内的样本特征较为相似,不同组的样本特征差异较大。常见的聚类算法包括kmeans、系谱聚类、密度聚类等。
关联分析关联分析的目的在于,找出项目(item)之间内在的联系。常常是指购物篮分析,即消费者常常会同时购买哪些产品(例如游泳裤、防晒霜),从而有助于商家的捆绑销售。
基于数据挖掘的案例和应用上文所提到的四种算法类型(分类、预测、聚类、关联),是比较传统和常见的。还有其他一些比较有趣的算法分类和应用场景,例如协同过滤、异常值分析、社会网络、文本分析等。下面,想针对不同的算法类型,具体的介绍下数据挖掘在日常生活中真实的存在。下面是能想到的、几个比较有趣的、和生活紧密关联的例子。
基于分类模型的案例这里面主要想介绍两个案例,一个是垃圾邮件的分类和判断,另外一个是在生物医药领域的应用,即肿瘤细胞的判断和分辨。
垃圾邮件的判别邮箱系统如何分辨一封Email是否属于垃圾邮件?这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。它的主要原理是,根据邮件正文中的单词,是否经常出现在垃圾邮件中,进行判断。例如,如果一份邮件的正文中包含“报销”、“发票”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
一般来说,判断邮件是否属于垃圾邮件,应该包含以下几个步骤。
第一,把邮件正文拆解成单词组合,假设某篇邮件包含100个单词。
第二,根据贝叶斯条件概率,计算一封已经出现了这100个单词的邮件,属于垃圾邮件的概率和正常邮件的概率。如果结果表明,属于垃圾邮件的概率大于正常邮件的概率。那么该邮件就会被划为垃圾邮件。
医学上的肿瘤判断如何判断细胞是否属于肿瘤细胞呢?肿瘤细胞和普通细胞,有差别。但是,需要非常有经验的医生,通过病理切片才能判断。如果通过机器学习的方式,使得系统自动识别出肿瘤细胞。此时的效率,将会得到飞速的提升。并且,通过主观(医生)+客观(模型)的方式识别肿瘤细胞,结果交叉验证,结论可能更加靠谱。
如何操作?通过分类模型识别。简言之,包含两个步骤。首先,通过一系列指标刻画细胞特征,例如细胞的半径、质地、周长、面积、光滑度、对称性、凹凸性等等,构成细胞特征的数据。其次,在细胞特征宽表的基础上,通过搭建分类模型进行肿瘤细胞的判断。
基于预测模型的案例这里面主要想介绍两个案例。即通过化学特性判断和预测红酒的品质。另外一个是,通过搜索引擎来预测和判断股价的波动和趋势。
红酒品质的判断如何评鉴红酒?有经验的人会说,红酒最重要的是口感。而口感的好坏,受很多因素的影响,例如年份、产地、气候、酿造的工艺等等。但是,统计学家并没有时间去品尝各种各样的红酒,他们觉得通过一些化学属性特征就能够很好地判断红酒的品质了。并且,现在很多酿酒企业其实也都这么干了,通过监测红酒中化学成分的含量,从而控制红酒的品质和口感。
那么,如何判断鉴红酒的品质呢?
第一步,收集很多红酒样本,整理检测他们的化学特性,例如酸性、含糖量、氯化物含量、硫含量、酒精度、PH值、密度等等。
第二步,通过分类回归树模型进行预测和判断红酒的品质和等级。
搜索引擎的搜索量和股价波动一只南美洲热带雨林中的蝴蝶,偶尔扇动了几下翅膀,可以在两周以后,引起美国德克萨斯州的一场龙卷风。你在互联网上的搜索是否会影响公司股价的波动?
很早之前,就已经有文献证明,互联网关键词的搜索量(例如流感)会比疾控中心提前1到2周预测出某地区流感的爆发。
同样,现在也有些学者发现了这样一种现象,即公司在互联网中搜索量的变化,会显着影响公司股价的波动和趋势,即所谓的投资者注意力理论。该理论认为,公司在搜索引擎中的搜索量,代表了该股票被投资者关注的程度。因此,当一只股票的搜索频数增加时,说明投资者对该股票的关注度提升,从而使得该股票更容易被个人投资者购买,进一步地导致股票价格上升,带来正向的股票收益。这是已经得到无数论文验证了的。
基于关联分析的案例:沃尔玛的啤酒尿布啤酒尿布是一个非常非常古老陈旧的故事。故事是这样的,沃尔玛发现一个非常有趣的现象,即把尿布与啤酒这两种风马牛不相及的商品摆在一起,能够大幅增加两者的销量。原因在于,美国的妇女通常在家照顾孩子,所以,她们常常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。沃尔玛从数据中发现了这种关联性,因此,将这两种商品并置,从而大大提高了关联销售。
啤酒尿布主要讲的是产品之间的关联性,如果大量的数据表明,消费者购买A商品的同时,也会顺带着购买B产品。那么A和B之间存在关联性。在超市中,常常会看到两个商品的捆绑销售,很有可能就是关联分析的结果。
基于聚类分析的案例:零售客户细分对客户的细分,还是比较常见的。细分的功能,在于能够有效的划分出客户群体,使得群体内部成员具有相似性,但是群体之间存在差异性。其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
例如,针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。然后,按照距离的远近,把相似的客户聚集为一类,从而有效的细分客户。将全体客户划分为诸如,理财偏好者、基金偏好者、活期偏好者、国债偏好者、风险均衡者、渠道偏好者等。
基于异常值分析的案例:支付中的交易欺诈侦测采用支付宝支付时,或者刷信用卡支付时,系统会实时判断这笔刷卡行为是否属于盗刷。通过判断刷卡的时间、地点、商户名称、金额、频率等要素进行判断。这里面基本的原理就是寻找异常值。如果您的刷卡被判定为异常,这笔交易可能会被终止。
异常值的判断,应该是基于一个欺诈规则库的。可能包含两类规则,即事件类规则和模型类规则。第一,事件类规则,例如刷卡的时间是否异常(凌晨刷卡)、刷卡的地点是否异常(非经常所在地刷卡)、刷卡的商户是否异常(被列入黑名单的套现商户)、刷卡金额是否异常(是否偏离正常均值的三倍标准差)、刷卡频次是否异常(高频密集刷卡)。第二,模型类规则,则是通过算法判定交易是否属于欺诈。一般通过支付数据、卖家数据、结算数据,构建模型进行分类问题的判断。
基于协同过滤的案例:电商猜你喜欢和推荐引擎电商中的猜你喜欢,应该是大家最为熟悉的。在京东商城或者亚马逊购物,总会有“猜你喜欢”、“根据您的浏览历史记录精心为您推荐”、“购买此商品的顾客同时也购买了商品”、“浏览了该商品的顾客最终购买了商品”,这些都是推荐引擎运算的结果。
这里面,确实很喜欢亚马逊的推荐,通过“购买该商品的人同时购买了**商品”,常常会发现一些质量比较高、较为受认可的书。一般来说,电商的“猜你喜欢”(即推荐引擎)都是在协同过滤算法(Collaborative Filter)的基础上,搭建一套符合自身特点的规则库。即该算法会同时考虑其他顾客的选择和行为,在此基础上搭建产品相似性矩阵和用户相似性矩阵。基于此,找出最相似的顾客或最关联的产品,从而完成产品的推荐。
基于社会网络分析的案例:电信中的种子客户种子客户和社会网络,最早出现在电信领域的研究。即,通过人们的通话记录,就可以勾勒出人们的关系网络。电信领域的网络,一般会分析客户的影响力和客户流失、产品扩散的关系。
基于通话记录,可以构建客户影响力指标体系。采用的指标,大概包括如下,一度人脉、二度人脉、三度人脉、平均通话频次、平均通话量等。基于社会影响力,分析的结果表明,高影响力客户的流失会导致关联客户的流失。其次,在产品的扩散上,选择高影响力客户作为传播的起点,很容易推动新套餐的扩散和渗透。
此外,社会网络在银行(担保网络)、保险(团伙欺诈)、互联网(社交互动)中也都有很多的应用和案例。
基于文本分析的案例这里面主要想介绍两个案例。一个是类似“扫描王”的APP,直接把纸质文档扫描成电子文档。相信很多人都用过,这里准备简单介绍下原理。另外一个是,江湖上总是传言红楼梦的前八十回和后四十回,好像并非都是出自曹雪芹之手,这里面准备从统计的角度聊聊。
字符识别:扫描王APP手机拍照时会自动识别人脸,还有一些APP,例如扫描王,可以扫描书本,然后把扫描的内容自动转化为word。这些属于图像识别和字符识别(Optical Character Recognition)。图像识别比较复杂,字符识别理解起来比较容易些。
查找了一些资料,字符识别的大概原理如下,以字符S为例。
第一,把字符图像缩小到标准像素尺寸,例如12*16。注意,图像是由像素构成,字符图像主要包括黑、白两种像素。
第二,提取字符的特征向量。如何提取字符的特征,采用二维直方图投影。就是把字符(12*16的像素图)往水平方向和垂直方向上投影。水平方向有12个维度,垂直方向有16个维度。这样分别计算水平方向上各个像素行中黑色像素的累计数量、垂直方向各个像素列上的黑色像素的累计数量。从而得到水平方向12个维度的特征向量取值,垂直方向上16个维度的特征向量取值。这样就构成了包含28个维度的字符特征向量。
第三,基于前面的字符特征向量,通过神经网络学习,从而识别字符和有效分类。
文学着作与统计:红楼梦归属这是非常着名的一个争论,悬而未决。对于红楼梦的作者,通常认为前80回合是曹雪芹所着,后四十回合为高鹗所写。其实主要问题,就是想确定,前80回合和后40回合是否在遣词造句方面存在显着差异。
这事让一群统计学家比较兴奋了。有些学者通过统计名词、动词、形容词、副词、虚词出现的频次,以及不同词性之间的相关系做判断。有些学者通过虚词(例如之、其、或、亦、了、的、不、把、别、好),判断前后文风的差异。有些学者通过场景(花卉、树木、饮食、医药与诗词)频次的差异,来做统计判断。总而言之,主要通过一些指标量化,然后比较指标之间是否存在显着差异,借此进行写作风格的判断。

以上是小编为大家分享的关于数据挖掘算法与生活中的应用案例的相关内容,更多信息可以关注环球青藤分享更多干货

⑶ 数据挖掘中最经典的例子"啤酒+尿布"是怎么回事

在一家超市中,人们发现了一个特别有趣的现象:尿布与啤侍烂酒这两种风马牛不相及的商品居然摆在一起。但这一奇怪的举措居然使尿布和啤酒的销量大幅增加了。这可不是一个笑话,而是一直被商家所津津乐道的发生在美国沃尔玛连锁超市的真实案例。

美国的妇女通常在家照顾孩子,所以她们经常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。这个发现最终为商家带来了大量的利润。

(3)数据挖掘案例源码扩展阅读:

《啤酒与尿布》是2008年清华大学出版社出版的图书,作者是高勇。该书讲述了啤酒和尿布销售之间的联系和启示。

该故事是数据挖掘技术对历史数据进行分析的结果,反映数据内在的规律。另外,沃尔玛派出市场调查人员和分析师对这一数据挖掘结果进行调查分析。大量实际调查和分析揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种消费行为倾向:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒老瞎漏。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在神亮买尿布后又随手带回了他们喜欢的啤酒。

参考资料:

网络-啤酒与尿布

⑷ 求一些"数据仓库和数据挖掘"的案例

与商业智能相关的词汇有例如数据仓库,数据装载(ETL),数据挖掘(Data Mining), 客户关系管理(CRM),SAS,PeopleSoft, SAP等。理清他们之间的关系才能准确制订个人职业发展规划。

到上个世纪九十年代,以数据存储为目的的联机分析处理系统(OLTP)已经发展得相当成熟,关系型数据库的应用已经非常普及,大型企业或部门积累了大量原始数据。这些数据是按照关系型结构存储,在更新,删除,有效存储(少冗余数据)方面表现出色,但在复杂查询方面效率却十分低下。为充分利数冲灶用已有数据,提供复杂查询,提供更好的决策支持,出现了数据仓库(Data Warehouse)。数据仓库与数据库(这里的数据库指关系型数据库)的区别在于,数据仓库以方便查询(称为主题)为目的,打破关系型数据库理论中标准泛式的约束,将数据库的数据重新组织和整理,为查询,报表,联机分析等提供数据支持。数据仓库建立起来后,定期的数据装载(ETL)成为数据仓库系统一个主要的日常工作。

在数据仓库发展的同时,一项从大量数据中发现隐含知识的技术也在学术领域兴起,这就是数据挖掘。数据挖掘也称为数据库知识发现(Knowledge Discovery in Databases, KDD),就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。最初的数据挖掘应用一般需要从组织数据做起,经历算法设计(建模),挖掘,评价,改进等步骤。其中组织整理数据占据大部分时间,大约占到整个数据挖掘项目80%的时间。

数据挖掘是近年来信息爆炸推动下的新兴产物,是从海量数据中提取有用知识的热门技术。传统的交易型系统,九十年代兴起的互连网技术及ERP系统在越来越廉价的存储设备配合下,产生了大量的数据。但与之相配合的数据分析和知识提取技术在相当长一段时间里没有大的进展,使得存储的大量原始数据没有被充分利用,转化成指导生产的“知识”,形成“数据的海洋,知识的荒漠”这样一种奇怪的现象。

数据挖掘(Data Mining)就是从大量数据中判扒发现潜在规律、提取有用知识的方法和技术。因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD)。数据挖掘不但能够学习已有的知识,而且能够发现未知的知识;得到的知识是“显式”的,既能为人所理解,又便于存储和应用,因此一出现就得到各个领域的重视。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。目前数据挖掘技术在零售业的货篮数据(Basket data)分析、金融风险预测、产品产量、质量分析、分子生物学、基因工程研究、Internet站点访问模式发现以及信息搜索和分类等许多领域得到了成功的应用。如果你访问着名的亚马逊网上书店(www.amazon.com),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book also bought”,这背后就是数据挖掘技术在发挥作用。

数据挖掘的真正普及是建立在数据仓库的成功应用之上。一个设计完善的数据仓库已经将原始数据经过了整理和变换,在此基础上再进行深入挖掘就是顺理成章的事情。数据挖掘渗透到某些行业,产生了一些特定的应用,比如现在经常会听到的客户关系管理(Customer Relationship Management, CRM)。客户关系管理的概念由来已久,但现代的客户关系管理一般指以客户数据为处理对象的一类商业智能应用。通过挖掘客户信息,发现潜在的消费趋势或动向。比如电信公司通过分析用户通话模式(通话时间,时段,通话量等),制订不同的计费方案,满足用户的薯扮同时也提高自己的利润。同其它应用一样,客户关系管理发展到一定阶段,会出现相应的系统供应商。据2003年1月的一项调查,CRM市场的领先者从高到低依次为PeopleSoft, Seibel, Oracle, SAP. 微软公司也将加入CRM市场。

从上可以看出,商业智能的应用领域非常广泛。它通常以数据仓库为基础,以数据挖掘为核心,演变出类似CRM这样的应用。一个商业智能系统的开发涉及到很多知识和技能,能够从事商业智能系统开发,那当然是最好不过的。如果没有这样的机会,对于想进入商业智能领域的朋友,应该如何规划自己的职业发展?

首先,根据自己想从事的应用领域,比照该行业商业智能应用所需的知识和经验,找出自己的长处和不足。比如已经有零售业,医药业,制造业的工作经验,或熟悉数据库,编程,人工智能,统计学等。然后补充自己的不足。通过与该领域有经验人士交流,查阅资料,自学或参加相关培训或选修大学课程都是弥补自己不足的手段。当你对将要从事的工作心中有数后,可以开始尝试申请入门级职位。不要编造经历,但要展示你对所申请职位所具备的相关经验(如 business方面的)和知识(会用到的技术,名词,清晰的概念)。在得到入门级职位后,要留心更高级职位用到的技术,软件等。然后利用业余时间继续补充相关知识。一旦内部有更高级职位的空缺,你又能够展示你具备的相关知识,就具有很强的竞争里,因为一般情况下公司都会愿意给内部职员一个尝试的机会的。

如果既没有business背景,又没有数据挖掘方面经验,该如何寻求突破呢?下面的例子不是唯一的道路,有心的朋友应该能得到启发。

一般正规的呼叫中心(这里指呼出服务)的工作方式是这样的:每天分析员根据现阶段的任务,从大量客户数据中筛选出响应可能性高的客户名单,交给业务代表;业务代表根据下达的客户名单做电话推销,对每个电话的结果做相应记录;根据客户实际响应情况,分析员调整筛选算法,选出第二天的客户名单;分析客户响应或不响应的原因。这就是一个典型的客户关系管理在呼叫中心应用的例子。

取得一个呼叫中心客户代表的职位并不难。难的是有没有看到做客户代表除每小时11,12元工资外潜在的价值。通过做客户代表,应该对该中心使用的客户关系管理系统有了应用经验,通过与主管或分析员的交流,应该了解交到你手里的客户名单是怎么分析出来的。心中有数后,就是等待时机的出现了。一个客户筛选算法的改进建议,一个内部分析员职位的空缺,就是展示自己商业智能方面能力的机会。这时的你,已经具备了其他应聘者所不具备的优势:有相关工作背景知识,熟悉应用环境和内部主管,提前知道空缺消息…

规划个人职业发展的时候,在众多考虑因素中有两个是非常重要的:所要投入的技术所处的发展阶段和能否结合已有专业知识。

一种技术从提出到广泛应用(或失败被抛弃)有一定的发展周期,称为科学技术的生命周期(Technological life cycle)。该周期大致分为创新(Innovators),早期成长(Early adopters),分歧点(Chasm),早期流行(Early majority),晚期流行(Late majority)和衰退阶段(Laggards)。对于应用型技术人员来说,早期流行阶段是进入一个新技术领域的最佳时机,因为该技术已经通过分歧点的考验,又处于上升阶段,风险最小,竞争最少,更容易脱颖而出。数据挖掘技术现在就处在这样一个早期流行阶段。

数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, technique second”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。

我们正处于一个信息爆炸的年代,能够在第一时间内获得或者找到最有价值的信息和资源,则成为企业在激烈地竞争中取胜的重要的因素,所以,商业智能(Business Intelligence)应运而生,而与之相关的技术和工具如Data Warehouse、 Data Mining、SAS则以惊人的速度得到快速、蓬勃的发展。

python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)

Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。

Python数据分析与挖掘技术概述

所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。

预先善其事必先利其器

我们首先聊聊数据分析的模块有哪些:

下面就说说这些模块的基础使用。

numpy模块安装与使用

安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy

numpy简单使用

生成随机数

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:

常用方法如下:

下面看看pandas对数据的统计,下面就说说每一行的信息

转置功能:把行数转换为列数,把列数转换为行数,如下所示:

通过pandas导入数据

pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。

CSV文件

csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列

excel表格

依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数

读取SQL

依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。

读取HTML

依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取

显示的是时候是通过python的列表展示,同时添加了行与列的标识

读取txt文件

输出显示的时候同时添加了行与列的标识

scipy

安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 数据可视化分析

我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。

下面请看代码:

下面说说修改图的样式

关于图形类型,有下面几种:

关于颜色,有下面几种:

关于形状,有下面几种:

我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:

我们还可以画虚线图,代码如下所示:

还可以给图添加上标题,x,y轴的标签,代码如下所示

直方图

利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。

Y轴为出现的次数,X轴为这个数的值(或者是范围)

还可以指定直方图类型通过histtype参数:

图形区别语言无法描述很详细,大家可以自信尝试。

举个例子:

子图功能

什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:

我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。


先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。


我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。

下面看看代码:

⑹ 数据挖掘技术在信用卡业务中的应用案例

数据挖掘技术在信用卡业务中的应用案例
信用卡业务具有透支笔数巨大、单笔金额小的特点,这使得数据挖掘技术在信用卡业务中的应用成为必然。国外信用卡发卡机构已经广泛应用数据挖掘技术促进信用卡业务的发展,实现全面的绩效管理。我国自1985年发行第一张信用卡以来,信用卡业务得到了长足的发展,积累了巨量的数据,数据挖掘在信用卡业务中的重要性日益显现。
一、数据挖掘技术在信用卡业务中的应用数据挖掘技术在信用卡业务中的应用主要有分析型客户关系管理、风险管理和运营管理。
1.分析型CRM
分析型CRM应用包括市场细分、客户获取、交叉销售和客户流失。信用卡分析人员搜集和处理大量数据,对这些数据进行分析,发现其数据模式及特征,分析某个客户群体的特性、消费习惯、消费倾向和消费需求,进而推断出相应消费群体下一步的消费行为,然后以此为基础,对所识别出来的消费群体进行特定产品的主动营销。这与传统的不区分消费者对象特征的大规模营销手段相比,大大节省了营销成本,提高了营销效果,从而能为银行带来更多的利润。对客户采用何种营销方式是根据响应模型预测得出的客户购买概率做出的,对响应概率高的客户采用更为主动、人性化的营销方式,如电话营销、上门营销;对响应概率较低的客户可选用成本较低的电子邮件和信件营销方式。除获取新客户外,维护已有优质客户的忠诚度也很重要,因为留住一个原有客户的成本要远远低于开发一个新客户的成本。在客户关系管理中,通过数据挖掘技术,找到流失客户的特征,并发现其流失规律,就可以在那些具有相似特征的持卡人还未流失之前,对其进行有针对性的弥补,使得优质客户能为银行持续创造价值。
2.风险管理
数据挖掘在信用卡业务中的另一个重要应用就是风险管理。在风险管理中运用数据挖掘技术可建立各类信用评分模型。模型类型主要有三种:申请信用卡评分卡、行为信用评分卡和催收信用评分卡,分别为信用卡业务提供事前、事中、和事后的信用风险控制。
申请评分模型专门用于对新申请客户的信用评估,它应用于信用卡征信审核阶段,通过申请人填写的有关个人信息,即可有效、快速地辨别和划分客户质量,决定是否审批通过并对审批通过的申请人核定初始信用额度,帮助发卡行从源头上控制风险。申请评分模型不依赖于人们的主观判断或经验,有利于发卡行推行统一规范的授信政策。行为评分模型是针对已有持卡人,通过对持卡客户的行为进行监控和预测,从而评估持卡客户的信用风险,并根据模型结果,智能化地决定是否调整客户信用额度,在授权时决定是否授权通过,到期换卡时是否进行续卡操作,对可能出现的使其提前进行预警。催收评分模型是申请评分模型和行为评分模型的补充,是在持卡人产生了逾期或坏账的情况下建立的。催收评分卡被用于预测和评估对某一笔坏账所采取措施的有效性,诸如客户对警告信件反应的可能性。这样,发卡行就可以根据模型的预测,对不同程度的逾期客户采取相应措施进行处理。以上三种评分模型在建立时,所利用的数据主要是人口统计学数据和行为数据。人口统计学数据包括年龄、性别、婚姻状况、教育背景、家庭成员特点、住房情况、职业、职称、收入状况等。行为数据包括持卡人在过去使用信用卡的表现信息,如使用频率、金额、还款情况等。由此可见,数据挖掘技术的使用,可以使银行有效地建立起事前、事中到事后的信用风险控制体系。
3.运营管理
虽然数据挖掘在信用卡运营管理领域的应用不是最重要的,但它已为国外多家发卡公司在提高生产效率、优化流程、预测资金和服务需求、提供服务次序等问题的分析上取得了较大成绩。
二、常用的数据挖掘方法
上述数据挖掘技术在信用卡领域的应用中,有很多工具可用于开发预测和描述模型。有些用统计方法,如线性回归和逻辑回归;有些有非统计或混合方法,如神经网络、遗传算法、决策树及回归树。这里仅讨论几种常见的典型方法。
1.线性回归
简单线性回归分析是量化两个连续变量之间关系的一种统计技术。这两个变量分别是因变量(预测变量)。使用这一方法,可以发现一条穿过数据的线,线上的点使对应数据点的方差最小。为市场营销、风险和客户关系管理建立模型时,通常有多个自变量,用多个独立自变量来预测一个连续变量称为多元线性回归,用线性回归方法建立的模型通常具有鲁棒性。
2.逻辑回归
逻辑回归是使用最广泛的建模技术,与线性回归很相似。两者的主要区别在于逻辑回归的因变量(想预测变量)不是连续的,而是离散的或者类型变量。如申请评分模型可运用逻辑回归方法,选取关键变量确定回归系数。以申请者的关键变量x1,x2,…xm为自变量,以y=[1 申请者是坏客户;0 申请者是好客户,为因变量,则对于二分类因变量,一般假设客户变坏的概率为 p(y=1)=eβ0 β1×1 … βmxm/1 eβ0 β1×1 … βmxm式中,β0,β1…,βm是常数,即1n(p/1-p)=β0 β1×1 … βmxm
3.神经网络
神经网络处理和回归处理大不相同,它不依照任何概率分布,而是模仿人脑功能,可以认为它是从每一次经验中提取并学习信息。神经网络系统由一系列类似于人脑神经元一样的节点组成,这些节点通过网络彼此互连。如果有数据输入,它们便可以进行确定数据模式的工作。神经网络由相互连接的输入层、中间层(或隐藏层)、输出层组成。中间层由多个节点组成,完成大部分网络工作。输出层输出数据分析的执行结果。
4.遗传算法
与神经元网络类似,遗传算法也不遵循任何概率分布,是源自“适者生存”的进化过程。它首先将问题的可能解按某种形式进行编码,编码后的解称为染色体。随机选取n个染色体作为初始种群,再根据预定的评价函数对每个染色体计算适应值,性能较好的染色体有较高的适应值。选择适应值较高的染色体进行复制,并通过遗传算子产生一群新的更适应环境的染色体,形成新的种群,直至最后收敛到一个最适应环境的个体,得到问题的最优化解。
5.决策树
决策树的目标是逐步将数据分类到不同的组或分支中,在因变量的值上建立最强划分。由于分类规则比较直观,所以易于理解。图1为客户响应的决策树,从中很容易识别出响应率最高的组。
三、实例分析
以下以逻辑回归方法建立信用卡申请评分模型为例,说明数据挖掘技术在信用卡业务中的应用。申请评分模型设计可分为7个基本步骤。
1.定义好客户和坏客户的标准
好客户和坏客户的标准根据适合管理的需要定义。按照国外的经验,建立一个预测客户好坏的风险模型所需的好、坏样本至少各要有1000个左右。为了规避风险,同时考虑到信用卡市场初期,银行的效益来源主要是销售商的佣金、信用卡利息、手续费收入和资金的运作利差。因此,一般银行把降低客户的逾期率作为一个主要的管理目标。比如,将坏客户定义为出现过逾期60天以上的客户;将坏客户定义为出现过逾期60天以上的客户;将好客户定义为没有30天以上逾期且当前没有逾期的客户。
一般来讲,在同一样本空间内,好客户的数量要远远大于坏客户的数量。为了保证模型具有较高的识别坏客户的能力,取好、坏客户样本数比率为1:1。
2.确定样本空间
样本空间的确定要考虑样本是否具有代表性。一个客户是好客户,表明持卡人在一段观察期内用卡表现良好;而一个客户只要出现过“坏”的记录,就把他认定为坏客户。所以,一般好客户的观察期要比坏客户长一些、好、坏客户可以选择在不同的时间段,即不同的样本空间内。比如,好客户的样本空间为2003年11月-2003年12月的申请人,坏客户的样本空间为2003年11月-2004年5月的申请人,这样既能保证好客户的表现期较长,又能保证有足够数量的坏客户样本。当然,抽样的好、坏客户都应具有代表性。
3.数据来源
在美国,有统一的信用局对个人信用进行评分,通常被称为“FICO评分”。美国的银行、信用卡公司和金融机构在对客户进行信用风险分析时,可以利用信用局对个人的数据报告。在我国,由于征信系统还不完善,建模数据主要来自申请表。随着我国全国性征信系统的逐步完善,未来建模的一部分数据可以从征信机构收集到。
4.数据整理
大量取样的数据要真正最后进入模型,必须经过数据整理。在数据处理时应注意检查数据的逻辑性、区分“数据缺失”和“0”、根据逻辑推断某些值、寻找反常数据、评估是否真实。可以通过求最小值、最大值和平均值的方法,初步验证抽样数据是否随机、是否具有代表性。
5.变量选择
变量选择要同时具有数学统计的正确性和信用卡实际业务的解释力。Logistic回归方法是尽可能准确找到能够预测因变量的自变量,并给予各自变量一定权重。若自变量数量太少,拟合的效果不好,不能很好地预测因变量的情况;若自变量太多,会形成过分拟合,预测因变量的效果同样不好。所以应减少一些自变量,如用虚拟变量表示不能量化的变量、用单变量和决策树分析筛选变量。与因变量相关性差不多的自变量可以归为一类,如地区对客户变坏概率的影响,假设广东和福建两省对坏客户的相关性分别为-0.381和-0.380,可将这两个地区归为一类,另外,可以根据申请表上的信息构造一些自变量,比如结合申请表上“婚姻状况”和“抚养子女”,根据经验和常识结合这两个字段,构造新变量“已婚有子女”,进入模型分析这个变量是不真正具有统计预测性。
6.模型建立
借助SAS9软件,用逐步回归法对变量进行筛选。这里设计了一种算法,分为6个步骤。
步骤1:求得多变量相关矩阵(若是虚拟变量,则>0.5属于比较相关;若是一般变量,则>0.7-0.8属于比较相关)。
步骤2:旋转主成分分析(一般变量要求>0.8属于比较相关;虚拟变量要求>0.6-0.7属于比较相关)。
步骤3:在第一主成分和第二主成分分别找出15个变量,共30个变量。
步骤4:计算所有30个变量对好/坏的相关性,找出相关性大的变量加入步骤3得出的变量。
步骤5:计算VIF。若VIF数值比较大,查看步骤1中的相关矩阵,并分别分析这两个变量对模型的作用,剔除相关性较小的一个。
步骤6:循环步骤4和步骤5,直到找到所有变量,且达到多变量相关矩阵相关性很而单个变量对模型贡献作用大。
7.模型验证
在收集数据时,把所有整理好的数据分为用于建立模型的建模样本和用于模型验证的对照样本。对照样本用于对模型总体预测性、稳定性进行验证。申请评分模型的模型检验指标包括K-S值、ROC、AR等指标。虽然受到数据不干净等客观因素的影响,本例申请评分模型的K-S值已经超过0.4,达到了可以使用的水平。
四、数据挖掘在国内信用卡市场的发展前景
在国外,信用卡业务信息化程度较高,数据库中保留了大量的数量资源,运用数据技术建立的各类模型在信用卡业务中的实施非常成功。目前国内信用卡发卡银行首先利用数据挖掘建立申请评分模型,作为在信用卡业务中应用的第一步,不少发卡银行已经用自己的历史数据建立了客户化的申请评分模型。总体而言,数据挖掘在我国信用卡业务中的应用处于数据质量问题,难于构建业务模型。
随着国内各家发卡银行已经建立或着手建立数据仓库,将不同操作源的数据存放到一个集中的环境中,并且进行适当的清洗和转换。这为数据挖掘提供了一个很好的操作平台,将给数据挖掘带来各种便利和功能。人民银行的个人征信系统也已上线,在全国范围内形成了个人信用数据的集中。在内部环境和外部环境不断改善的基础上,数据挖掘技术在信用卡业务中将具有越来越广阔的应用前景。

⑺ 数据挖掘的应用分析与举例

Data Mining在各领域的应用非常广泛,只要该产业拥有具分析价值与需求的数据仓储或数据库,皆可利用Mining工具进行有目的的挖掘分析。一般较常见的应用案例多发生在零售业、直效行销界、制造业、财务金融保险、通讯业以及医疗服务等。
于销售数据中发掘顾客的消费习性,并可借由交易纪录找出顾客偏好的产品组合,其它包括找出流失顾客的特征与推出新产品的时机点等等都是零售业常见的实例;直效行销强调的分众概念与数据野携库行销方式在导入Data Mining的技术后,使直效行销的发展性更为强大,例如利用Data Mining分析顾客群之消费行为与交易纪录,结合基本数据,并依其对品牌价值等级的高低来区隔顾客,进而达到差异化行销的目的;制造业对Data Mining的需求多运用在品质控管方面,由制造过程中找出影响产品品质最重要的因素,以期提高作业流程的效率。
近来电话公司、信用卡公司、保险公司以及股票交易商对缺虚于诈欺行为的侦测(Fraud Detection)都很有兴趣,这些行业每年因为诈欺行为而造成的损失都非常可观,Data Mining可以伏脊燃从一些信用不良的客户数据中找出相似特征并预测可能的诈欺交易,达到减少损失的目的。财务金融业可以利用 Data Mining来分析市场动向,并预测个别公司的营运以及股价走向。Data Mining的另一个独特的用法是在医疗业,用来预测手术、用药、诊断、或是流程控制的效率。
来自网络。

⑻ 用R语言对vcf文件进行数据挖掘.5 vcf可视化1

目录

本神裂文介绍的案例和方法简介里一样,但是会有更游型闭加详细的说明。

和之前一样使用 pinfsc50 包里的数据。vcf数据,参考序列的fasta数据,还有gff格式的注释数据。

然后租渣蹦出来一段警告文

create.chromR 这个函数会自动确认刚才提到的三个文件里的染色体名字是否对的上。这个例子里染色体名用到了Supercontig,貌似有些不匹配,所以跳出了警告文。这里可以进行可视化,确认没有问题的话可以进行下一步。
在此我们根据前面文章里的内容直接对数据进行过滤,然后可视化。

可以发现Variants per Site和Nucleotide Content发生了变化。

这个包还可以快速可视化vcf文件。

可以看出DP,MQ都趋向于正规分布。最后的每个窗口的variant count的主峰在0表示这个基因大多是纯合体,只有少部分有变异。

通过动手练习我们已经掌握了如何导入vcf文件的数据,然后进行可视化诊断,接下来的文章里会介绍更多的其他用法。

⑼ 数据挖掘源代码

基本Kmeans算法实现 C++代码

#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<math.h>
#include<stdlib.h>
#definek3//簇的数目
usingnamespacestd;
//存放元组的属性信息
typedefvector<double>Tuple;//存储每条数据记录

intdataNum;//数据集中数据记录数目
intdimNum;//每条记录的维数

//计算两个元组间的欧几里距离
doublegetDistXY(constTuple&t1,constTuple&t2)
{
doublesum=0;
for(inti=1;i<=dimNum;++i)
{
sum+=(t1[i]-t2[i])*(t1[i]-t2[i]);
}
returnsqrt(sum);
}

//根据质心,决定当前元组属于哪个簇
intclusterOfTuple(Tuplemeans[],constTuple&tuple){
doubledist=getDistXY(means[0],tuple);
doubletmp;
intlabel=0;//标示属于哪一个簇
for(inti=1;i<k;i++){
tmp=getDistXY(means[i],tuple);
if(tmp<dist){dist=tmp;label=i;}
}
returnlabel;
}
//获得给定簇集的平方误差
doublegetVar(vector<Tuple>clusters[],Tuplemeans[]){
doublevar=0;
for(inti=0;i<k;i++)
{
vector<Tuple>t=clusters[i];
for(intj=0;j<t.size();j++)
{
var+=getDistXY(t[j],means[i]);
}
}
//cout<<"sum:"<<sum<<endl;
returnvar;

}
//获得当前簇的均值(质心)
TuplegetMeans(constvector<Tuple>&cluster){

intnum=cluster.size();
Tuplet(dimNum+1,0);
for(inti=0;i<num;i++)
{
for(intj=1;j<=dimNum;++j)
{
t[j]+=cluster[i][j];
}
}
for(intj=1;j<=dimNum;++j)
t[j]/=num;
returnt;
//cout<<"sum:"<<sum<<endl;
}

voidprint(constvector<Tuple>clusters[])
{
for(intlable=0;lable<k;lable++)
{
cout<<"第"<<lable+1<<"个簇:"<<endl;
vector<Tuple>t=clusters[lable];
for(inti=0;i<t.size();i++)
{
cout<<i+1<<".(";
for(intj=0;j<=dimNum;++j)
{
cout<<t[i][j]<<",";
}
cout<<") ";
}
}
}

voidKMeans(vector<Tuple>&tuples){
vector<Tuple>clusters[k];//k个簇
Tuplemeans[k];//k个中心点
inti=0;
//一开始随机选取k条记录的值作为k个簇的质心(均值)
srand((unsignedint)time(NULL));
for(i=0;i<k;){
intiToSelect=rand()%tuples.size();
if(means[iToSelect].size()==0)
{
for(intj=0;j<=dimNum;++j)
{
means[i].push_back(tuples[iToSelect][j]);
}
++i;
}
}
intlable=0;
//根据默认的质心给簇赋值
for(i=0;i!=tuples.size();++i){
lable=clusterOfTuple(means,tuples[i]);
clusters[lable].push_back(tuples[i]);
}
doubleoldVar=-1;
doublenewVar=getVar(clusters,means);
cout<<"初始的的整体误差平方和为:"<<newVar<<endl;
intt=0;
while(abs(newVar-oldVar)>=1)//当新旧函数值相差不到1即准则函数值不发生明显变化时,算法终止
{
cout<<"第"<<++t<<"次迭代开始:"<<endl;
for(i=0;i<k;i++)//更新每个簇的中心点
{
means[i]=getMeans(clusters[i]);
}
oldVar=newVar;
newVar=getVar(clusters,means);//计算新的准则函数值
for(i=0;i<k;i++)//清空每个簇
{
clusters[i].clear();
}
//根据新的质心获得新的簇
for(i=0;i!=tuples.size();++i){
lable=clusterOfTuple(means,tuples[i]);
clusters[lable].push_back(tuples[i]);
}
cout<<"此次迭代之后的整体误差平方和为:"<<newVar<<endl;
}

cout<<"Theresultis: ";
print(clusters);
}
intmain(){

charfname[256];
cout<<"请输入存放数据的文件名:";
cin>>fname;
cout<<endl<<"请依次输入:维数样本数目"<<endl;
cout<<endl<<"维数dimNum:";
cin>>dimNum;
cout<<endl<<"样本数目dataNum:";
cin>>dataNum;
ifstreaminfile(fname);
if(!infile){
cout<<"不能打开输入的文件"<<fname<<endl;
return0;
}
vector<Tuple>tuples;
//从文件流中读入数据
for(inti=0;i<dataNum&&!infile.eof();++i)
{
stringstr;
getline(infile,str);
istringstreamistr(str);
Tupletuple(dimNum+1,0);//第一个位置存放记录编号,第2到dimNum+1个位置存放实际元素
tuple[0]=i+1;
for(intj=1;j<=dimNum;++j)
{
istr>>tuple[j];
}
tuples.push_back(tuple);
}

cout<<endl<<"开始聚类"<<endl;
KMeans(tuples);
return0;
}

⑽ 国内的数据挖掘,大数据应用的案例有哪些

1. 亚马逊的“信息公司”:果全球哪家公司从大数据发掘出了最大价值,截至目前,答案可能非亚马逊莫属。亚马逊也要处理海量数据,这些交易数据的直接价值更大。
作为一家“信息公司”,亚马逊不仅铅拿从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来

2. 谷歌的意图:果说有一家科技公司准确定义了“大数据”概念的话,那一定是谷歌。谈世根据槐侍搭搜索研究公司comScore的数据,仅2012年3月一个月的时间,谷歌处理的搜索词条数量就高达122亿条。谷歌的体量和规模,使它拥有比其他大多数企业更多的应用大数据的途径。
3.塔吉特的“数据关联挖掘”:用先进的统计方法,商家可以通过用户的购买历史记录分析来建立模型,预测未来的购买行为,进而设计促销活动和个性服务避免用户流失到其他竞争对手那边。

阅读全文

与数据挖掘案例源码相关的资料

热点内容
如何在vps上搭建自己的代理服务器 浏览:742
nginxphp端口 浏览:403
内脏pdf 浏览:150
怎么看云服务器架构 浏览:85
我的世界国际服为什么登不进服务器 浏览:996
微盟程序员老婆 浏览:930
intellij创建java 浏览:110
java连接odbc 浏览:38
启动修复无法修复电脑命令提示符 浏览:359
手机编程是什么 浏览:98
山东移动程序员 浏览:163
苏州java程序员培训学校 浏览:477
单片机液晶驱动 浏览:854
魔拆app里能拆到什么 浏览:131
新预算法的立法理念 浏览:144
wdcpphp的路径 浏览:134
单片机p0口电阻 浏览:926
浏览器中调短信文件夹 浏览:594
五菱宏光空调压缩机 浏览:69
为什么app占用几百兆 浏览:680