导航:首页 > 源码编译 > 算法框图高考真题文科

算法框图高考真题文科

发布时间:2023-05-11 19:06:05

① 跪求05-10年广东省文科数学高考题(附答案解析的那种)

我这里只有07-09年的,而且有些图片发不了,不如你姿亮留个邮箱,我三个都发给你。或者你可以用网络文档搜一下,我已经上传两个去了。
2007年广东省高考数学(文科)试题及详细解答
一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.
1.已知集合,,则=
A.{x|-1≤x<1} B.{x |x>1} C.{x|-1<x<1} D.{x |x≥-1}
【解析】,故,选(C).
2.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=
A.-2 B. C. D.2
【解析】,依题意, 选(D).
3.若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是
A.单调递减的偶函数 B.单调递减的奇函数
C.单凋递增的偶函数 D.单涮递增的奇函数
【解析】函数单调递减且为奇函数,选(B).
4.若向量满足,与的夹角为,则
A. B. C. D.2
【解析】,选(B).
5.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶l小时到达丙地。下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s与时间t之间关系的图象中,正确的是

【解析】依题意的关键字眼“以80km/h的速度匀速行驶l小时到达丙地”选得答案(C).

6.若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是

【解析】逐一判除,易得答案(D).
7.图l是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A:、…、A,。(如A:表示身高(单位:cm)在梁册稿[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是
A.i<9 B.i<8 C.i<7 D.i<6
【解析】身高在160~180cm(含160cm,不含180cm)的学生人数为,算法流程图实质上是求和,不难得到答案(B).
8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是

【解析】随机取出2个小球得到的结果数有种(提倡列举).取出的小球标注的数字之和为3或6的结果为共3种,故所求答案为(A).
9.已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期T 和初相分别为

【解析】依题意,结合可得,易得,故选(A).
10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给
A、 B、C、D四个维修点某种配件各50件.在使用前发现需将
A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,
但调整只能在相邻维修点之间进行.那么要完成上述调整,最少
的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为
A.18 B.17 C.16 D.15
【解析】很多同学根据题意发现n=16可行,判除A,B选项,但对于C,D选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设的件数为(规定:当时,则B调整了件给A,下同!),的件数为,的件数为,的件数为,依题意可得,,,,从而,,,故调动件次,画出图像(或绝对值的几何意义)可得最小值为16,故选(C).
二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只橡孝能选做一题,两题全答的,只计算前一题得分.
11.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 .
【解析】设所求抛物线方程为,依题意,故所求为.
12.函数f(x)=xlnx(x>0)的单调递增区间是 .
【解析】由可得,答案:.
13.已知数列{an}的前n项和Sn=n2-9n,则其通项an= ;若它的第k项满足5<ak<8,则k=
【解析】{an}等差,易得,解不等式,可得
14.(坐标系与参数方程选做题)在极坐标系中,直线l的方程为ρsinθ=3,则点(2,π/6)到直线l的距离为 .
【解析】法1:画出极坐标系易得答案2; 法2:化成直角方程及直角坐标可得答案2.
15.(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D, 则∠DAC= .
【解析】由某定理可知,又,
故.
三、解答题:本大题共6小题,满分80分.
16.(本小题满分14分)
已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).
(1)若,求c的值; (2)若C=5,求sin∠A的值.
【解析】(1)…………………………………………………………4分
由可得………………6分, 解得………………8分
(2)当时,可得, ΔABC为等腰三角形………………………10分
过作交于,可求得……12分 故……14分
(其它方法如①利用数量积求出进而求;②余弦定理正弦定理等!)
17.(本小题满分12分)
已知某几何体的俯视图是如图5所示的矩形,正视图(或称主
视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视
图)是一个底边长为6、高为4的等腰三角形.
(1)求该儿何体的体积V;
(2)求该几何体的侧面积S
【解析】画出直观图并就该图作必要的说明. …………………3分
(2)……………7分 (3)………12分
18(本小题满分12分)
F表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生
产能耗Y(吨标准煤)的几组对照数据
3 4 5 6
y 2.5 3 4 4.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5+43+54+64.5=66.5)
【解析】(1)画出散点图. …………………………………………………………………………3分
(2), , , …………………………………7分
由所提供的公式可得,故所求线性回归方程为………10分
(3)吨. ………………………………………………………12分
19(本小题满分14分)
在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0.椭圆与圆c的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
【解析】(1)设圆的方程为………………………2分
依题意,,…………5分
解得,故所求圆的方程为……………………7分
(注:此问若结合图形加以分析会大大降低运算量!)
(2)由椭圆的第一定义可得,故椭圆方程为,焦点……9分
设,依题意, …………………11分
解得或(舍去) ……………………13分 存在……14分
20.(本小题满分14分)
已知函数,是力程以的两个根(α>β),是的导数,设 (1)求的值;(2)已知对任意的正整数有,记,求数列的前项和.
【解析】(1)求根公式得, …………3分
(2)………4分 ………5分 ……7分
……10分
∴数列是首项,公比为2的等比数列………11分
∴………………………………………………………14分21.(本小题满分l4分)
已知是实数,函数.如果函数在区间[-1,1]上有零点,求的取值范围.
【解析】若,则,令,不符题意, 故………2分
当在 [-1,1]上有一个零点时,此时或………6分
解得或 …………………………………………………………………8分
当在[-1,1]上有两个零点时,则………………………………10分
解得即………………12分
综上,实数的取值范围为. ……………………………………14分
(别解:,题意转化为知求的值域,令得转化为勾函数问题.)
2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是
A.AB????? B.BC C.A∩B=C D.B∪C=A
【解析】送分题呀!答案为D.
2.已知0<a<2,复数(i是虚数单位),则|z|的取值范围是
A.(1,) B. (1,) C.(1,3) D.(1,5)
【解析】,而,即,,选B.
3.已知平面向量,,且//,则=( )
A、 B、 C、 D、
【解析】排除法:横坐标为,选B.
4.记等差数列的前项和为,若,则该数列的公差( )
A、2 B、3 C、6 D、7
【解析】,选B.
5.已知函数,则是( )
A、最小正周期为的奇函数 B、最小正周期为的奇函数
C、最小正周期为的偶函数 D、最小正周期为的偶函数
【解析】,选D.
6.经过圆的圆心C,且与直线垂直的直线方程是( )
A、 B、 C、 D、
【解析】易知点C为,而直线与垂直,我们设待求的直线的方程为,将点C的坐标代入马上就能求出参数的值为,故待求
的直线的方程为,选C.(或由图形快速排
除得正确答案.)
7.将正三棱柱截去三个角(如图1所示A、B、C分
别是三边的中点)得到的几何体如图2,则
该几何体按图2所示方向的侧视图(或称左视图)为

【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.
8. 命题“若函数在其定义域内是减函数,则”的逆否命题是( )
A、若,则函数在其定义域内不是减函数
B、若,则函数在其定义域内不是减函数
C、若,则函数在其定义域内是减函数
D、若,则函数在其定义域内是减函数
【解析】考查逆否命题,易得答案A.
9、设,若函数,,有大于零的极值点,则( )
A、 B、 C、 D、
【解析】题意即有大于0的实根,数形结合令,则两曲线交点在第一象限,结合图像易得,选A.
10、设,若,则下列不等式中正确的是( )
A、 B、 C、 D、
【解析】利用赋值法:令排除A,B,C,选D.
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11-13题)
11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,
由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .
【解析】,故答案为13.
12.若变量x,y满足则z=3x+2y的最大 值是________。
【解析】画出可行域,利用角点法可得答案70.
13.阅读图4的程序框图,若输入m=4,n=3,则输出a=_______,i=________。
(注:框图中的赋值符号“=”,也可以写成“←”或“:=”)
【解析】要结束程序的运算,就必须通过整除的条件运算,
而同时也整除,那么的最小值应为和的最小公倍
数12,即此时有。
(二)选择题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)已知曲线的极坐标方程分别为,则曲线 交点的极坐标为
【解析】我们通过联立解方程组解得,即两曲线的交点为.
15.(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=________.
【解析】依题意,我们知道,由相似三角形的性质我们有,即。
三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分13分)
已知函数的最大值是1,其图像经过点。
(1)求的解析式;(2)已知,且求的值。
【解析】(1)依题意有,则,将点代入得,而,,,故;
(2)依题意有,而,,

17.(本小题满分12分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
【解析】设楼房每平方米的平均综合费为f(x)元,则

, 令 得
当 时, ;当 时,
因此 当时,f(x)取最小值;
答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。
18.(本小题满分14分)
如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。
(1)求线段PD的长;
(2)若,求三棱锥P-ABC的体积。
【解析】(1) BD是圆的直径 又 ,
, ;
(2 ) 在中,

底面ABCD

三棱锥的体积为 .
19.(本小题满分13分)
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 初二年级 初三年级
女生 373 x y
男生 377 370 z
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
求x的值;
现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
已知y245,z245,求初三年级中女生比男生多的概率.
【解析】(1)
(2)初三年级人数为y+z=2000-(373+377+380+370)=500,
现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为: 名
(3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y,z);
由(2)知 ,且 ,基本事件空间包含的基本事件有:
(245,255)、(246,254)、(247,253)、……(255,245)共11个
事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个

20.(本小题满分14分)
设,椭圆方程为,抛物线方程为.如图6所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
【解析】(1)由得,
当得,G点的坐标为,,,
过点G的切线方程为即,
令得,点的坐标为,由椭圆方程得点的坐标为,
即,即椭圆和抛物线的方程分别为和;
(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,
同理 以为直角的只有一个。
若以为直角,设点坐标为,、两点的坐标分别为和,

关于的二次方程有一大于零的解,有两解,即以为直角的有两个,
因此抛物线上存在四个点使得为直角三角形。
21.(本小题满分14分)
设数列满足,, 。数列满足是非零整数,且对任意的正整数和自然数,都有。
(1)求数列和的通项公式;
(2)记,求数列的前项和。
【解析】(1)由得
又 , 数列是首项为1公比为的等比数列,


由 得 ,由 得 ,…
同理可得当n为偶数时,;当n为奇数时,;因此
(2)
当n为奇数时,

当n为偶数时

令 ……①
①×得: ……②
①-②得:

因此
2009年普通高等学校招生全国统一考试(广东A卷)
数学(文科)本试卷共4页,21小题,满分150分。考试用时120分钟。
参考公式:锥体的体积公式V=,其中S是锥体的底面积,h是锥体的高。
一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,则正确表示集合M={—1,0,1}和N={}关系的韦恩(Venn)图是

2.下列n的取值中,使in =1(i是虚数单位)的是
A.n=2 B.n=3 C.n=4 D.n=5
3.已知平面向量a =(x,1),b =(—x,x2 ),则向量a+b
A.平行于x轴 B.平行于第一、三象限的角平分线
C.平行于y轴 D.平行于第二、四象限的角平分线
4.若函数是函数的反函数,且,则
A. B. C. D.
5.已知等比数列的公比为正数,且,,则
A. B. C. D.
6.给定下列四个命题:
①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
其中,为真命题的是
A.①和② B.②和③ C.③和④ D.②和④
7.已知中,的对边分别为。若,且 ,则
A.2 B. C. D.
8.函数的单调递增区间是
A. B.(0,3) C.(1,4) D.
9.函数是
A.最小正周期为的奇函数 B.最小正周期为的偶函数
C.最小正周期为的奇函数 D.最小正周期为的偶函数
10.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表。若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是

A.20.6 B.21 C.22 D.23
二、填空题:本大题共5小题,考生作答4小题,每小题5分,(一)必做题(11~13题)
11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:

图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填
,输出的= 。
(注:框图中的赋值符号“=”也可以写成“”或“:=”)
12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号)。若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人。

13.以点(2,-1)为圆心且与直线相切的圆的方程是_______________________。
(二)选做题(14、15题,考生只能从中选作一题)
14.(坐标系与参数方程选做题)若直线(为参数)与直线垂直,则常数=________。
15.(几何证明选讲选做题)如图3,点A,B,C是圆上的点,且,,则圆的面积等于__________________。

三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
已知向量与互相垂直,其中.
求和的值;
若,求的值。
17.(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥,下半部分是长方体。图5、图6分别是该标识墩的正(主)视图和俯视图。
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线平面.

18.(本小题满分13分)
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。

(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
19.(本小题满分14分)
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12。圆:的圆心为点。
(1)求椭圆G的方程;
(2)求面积;
(3)问是否存在圆包围椭圆G?请说明理由。
20.(本小题满分14分)
已知点是函数的图像上一点。等比数列的前n项和为。数列的首项为c,且前n项和满足
(1)求数列和的通项公式;
(2)若数列的前项和为,问满足>的最小正整数是多少?
21.(本小题满分14分)
已知二次函数的导函数的图像与直线平行,且在处取得极小值。设函数。
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点。
2009年普通高等学校招生全国统一考试(广东卷)
数学(文科) 参考答案
选择题
BCCAB DADAB
1、【解析】由N= { x |x+x=0}得,选B.
2、【解析】因为,故选C.
3、【解析】,由及向量的性质可知,C正确.
4、【解析】函数的反函数是,又,即,
所以,,故,选A.
5、【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B
6、【解析】①错, ②正确, ③错, ④正确.故选D
7、【解析】
由a=c=可知,,所以,
由正弦定理得,故选A
8、【解析】,令,解得,故选D
9、【解析】因为为奇函数,,所以选A.
10、【解析】由题意知,所有可能路线有6种:
①,②,③,④,⑤,⑥,
其中, 路线③的距离最短, 最短路线距离等于,
故选B.
填空题
11、【答案】,
【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.
12、【答案】37, 20
【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.
40岁以下年龄段的职工数为,则应抽取的人数为人.
13、【解析】将直线化为,圆的半径,所以圆的方程为
14、【答案】
【解析】将化为普通方程为,斜率,
当时,直线的斜率,由得;
当时,直线与直线不垂直.
综上可知,.
15、【答案】
【解析】连结AO,OB,因为 ,所以,为等边三角形,故圆O的半径,圆O的面积.
解答题
16、【解析】(1),,即
又∵, ∴,即,∴
又 ,
(2) ∵
, ,即
又 , ∴
17、【解析】(1)侧视图同正视图,如下图所示.

(2)该安全标识墩的体积为:

(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.
由正四棱锥的性质可知,平面EFGH ,
又 平面PEG
又 平面PEG;

18、【解析】(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;
(2)
甲班的样本方差为
=57
(3)设身高为176cm的同学被抽中的事件为A;
从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)
(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)
(178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件;

19、【解析】(1)设椭圆G的方程为: ()半焦距为c;
则 , 解得 ,
所求椭圆G的方程为:.
(2 )点的坐标为

(3)若,由可知点(6,0)在圆外,
若,由可知点(-6,0)在圆外;
不论K为何值圆都不能包围椭圆G.
20、【解析】(1),
,,
.
又数列成等比数列, ,所以 ;
又公比,所以 ;

又,, ;
数列构成一个首相为1公差为1的等差数列, ,
当, ;
();
(2)

由得,满足的最小正整数为112.
21、【解析】(1)设,则;
又的图像与直线平行
又在取极小值, ,
, ;
, 设


(2)由,

当时,方程有一解,函数有一零点;
当时,方程有二解,若,,
函数有两个零点;若,
,函数有两个零点;
当时,方程有一解, , 函数有一零点

② (本小题满分12分)用循环语句For语句写出 的算法,并画出它的算法框图。

解:算法如下:
S=0
For雹陪橡 i="1" To 100
S=S+i*i
Next
输源旁出S乱塌…………6分
算法框图如图: …………12分

③ 2010湖南高考文科数学试题

2010年普通高等学校招生全国统一考试(湖南卷)数学(文史类)
_____班 姓名_________
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数 等于 ( )
A. B. C. -1+i D. -1-i
2. 下列命题中的假命题是 ( )
A. B. C. D.
3.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )
A. B. C. D..
4.极坐标方程 和参数方程 (t为参数)所表示的图形分别是 ( )
A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线
5.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是 ( )
A. 4 B. 6 C. 8 D. 12
6.若非零向量 、 满足 , ,则 与 的夹角为 ( )
A.300 B. 600 C. 1200 D. 1500
7.在 中,角 的所对的边长分别为 ,若 ,则 ( )
A.a>b B. a<b C. a=b D. a与b 的大小关系不能确定.
8. 函数 与 在同一直角坐标系中的图象可能是 ( )

二 填空题:本码胡大题共7个小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。
9 .已知集合A={1,2,3},B={2, m,4},A∩B={2,3},则m= .
10.已知一种材料的最佳入量在100g到200g之间.若用0.618法安排试链孙验,则第一次试点的加入量可以是 g.
11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为
12 . 图1是求实数x的绝对值的算法程序框图,则判断框可填
13.图2中的三个直角三角形是 一个体积为20cm3的几何体的三视图,则 .

14. 若不同两点P,Q的坐标分别为(a,b) ,(3-b,3-a),则线段PQ的垂直平分线l的斜率为_________,圆 关于直线l对称的圆的方程为_________________________.
15. 若规定 的子集 为E的第k个子集,其中 ,则 (1) 是E的第_______个子集;
(2) E的第211个迟唤拦子集是________________.
三 解答题:每小题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤。
16.(本小题满分12分)已知函数 .
(Ⅰ)求函数 的最小正周期; (II)求函数 的最大值及 取最大值时x的集合。

高校 相关人数 抽取人数
A 18 x
B 36 2
C 54 y
17.(本小题满分12分)为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(I)求x,y;
(II)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

18.(本小题满分12分) 如图3所示,在长方体ABCD- 中,AB=AD=1, AA1=2, M是棱C 的中点.
(Ⅰ)求异面直线 M和 所成的角的正切值;
(Ⅱ)证明:平面ABM 平面A1B1M.

19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4).考察范围为到A,B两点的距离之和不超过10km的区域。
(Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图4所示,设线段P1P2是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,问:经过多长时间,点A恰好在冰川边界线上?

20 (本小题满分13分) 给出下面的数表序列:
表1 表2 表3 …
1 1 3 1 3 5
4 4 8
12
其中表n(n=1,2,3, …)有n行,第1行的n个数是1,3,5,…,2n-1,从第二行起,每行中的每个数都等于它肩上的两数之和.
(Ⅰ)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(Ⅱ)某个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:
.

21.(本小题满分13分)已知函数 , 其中 且
(Ⅰ)讨论函数 的单调性;
(Ⅱ)设函数 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.

2010年普通高等学校招生全国统一考试(湖南卷)
数学(文史类)参考答案
一、
题号 1 2 3 4 5 6 7 8
答案 A C A D B C A D

二、 9. 3 10. 161.8或138.2 11. 12.x>0或x>0? 或x≥0 或x≥0?
13. 4 14. -1 , x2+(y-1)2=1 15. 5;
三、16.解(Ⅰ) 因为
所以函数 的最小正周期
(II)由(Ⅰ)知,当 ,即 时, 取最大值 .
因此函数 取最大值时x的集合为
17解: (I)由题意可得 ,所以x=1,y=3
(II)记从高校B抽取的2人为b1,b2, 从高校C抽取的3人为c1,c2,c3,则从高校B、C抽取的5人中选2人作专题发言的基本事件有:
(b1,b2),(b1,c1), (b1,c2), (b1,c3), (b2,c1), (b2,c2), (b2,c3),( c1,c2), ( c1,c3), ( c2,c3)共10种.
设选中的2人都来自高校C的事件为X,则X包含的基本事件有( c1,c2), ( c1,c3), ( c2,c3)共3种.
因此 . 故选中的2人都来自高校C的概率为
18.解 Ⅰ)如图,因为 ,所以 异面
直线 M和 所成的角,因为 平面 ,
所以 ,而 =1, ,
故 .
即异面直线 M和 所成的角的正切值为

(Ⅱ)由 平面 ,BM 平面 ,得 BM ①
由(Ⅰ)知, , , ,所以 ,
从而BM B1M ② 又 , 再由① ②得BM 平面A1B1M,而BM 平面ABM,
因此平面ABM 平面A1B1M.

19. 解(Ⅰ)设边界曲线上点的坐标为P(x,y),则由|PA|+|PB|=10知,
点P在以A、B为焦点,长轴长为2a=10的椭圆上,此时短半轴
长 .所以考察区域边界曲线(如图)的方程

(Ⅱ)易知过点P1、P2的直线方程为4x-3y+47=0,
因此点A到直线P1P2的距离为

设经过n年,点A恰好在冰川边界线上,则利用等比数列求和公式可得
,解得 n=5. 即经过5年,点A恰好在冰川边界线上.
20. 解:(Ⅰ)表4为 1 3 5 7
4 8 12
12 20
32
它的第1,2,3,4行中的数的平均数分别为4,8,16,32. 它们构成首项为4,公比为2的等比数列.
将结这一论推广到表n(n≥3),即
表n各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.
(Ⅱ)表n第1行是1,3,5,…,2n-1,其平均数是
由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中的数的平均数是 ),于是表n中最后一行的唯一一个数为 .因此

(k=1,2,3, …,n),故

21. (Ⅰ) 的定义域为 ,
(1)若-1<a<0,则当0<x<-a时, ;当-a <x<1时, ;当x>1时, .故 分别在 上单调递增,在 上单调递减.
(2)若a<-1,仿(1)可得 分别在 上单调递增,在 上单调递减.
(Ⅱ)存在a,使g(x)在[a,-a]上是减函数.
事实上,设 ,则
,再设 ,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以 ,由于 ,因此 ,而 ,所以 ,此时,显然有g(x)在[a,-a]上为减函数,当且仅当 在[1,-a]上为减函数,h(x)在[a,1上为减函数,且 ,由(Ⅰ)知,当a<-2时, 在 上为减函数 ①
又 ②
不难知道,
因 ,令 ,则x=a或x=-2,而
于是 (1)当a<-2时,若a <x<-2,则 ,若-2 <x<1,则 ,因而 分别在 上单调递增,在 上单调递减;
(2)当a=-2时, , 在 上单调递减.
综合(1)(2)知,当 时, 在 上的最大值为 ,所以, ③
又对 ,只有当a=-2时在x=-2取得,亦即 只有当a=-2时在x=-2取得.
因此,当 时,h(x)在[a,1上为减函数,从而由①,②,③知
综上所述,存在a,使g(x)在[a,-a]上是减函数,且a的取值范围为 .

④ 如右图所示,程序框图(算法流程图)的输出结果是

2550
本题主要考查了以循环结构的算法流程图为载体,求旅汪满足条件的最小正整数n,着重考查了橡启等差数列的求和公式和循环结构等知识,属于基础题
根据题中的程序框图,列出如下表格
该算法流程图的作用是计算0+2+4+…+2n的和,直到2n>100时输出这个和
根据等差数列前n项和的公式,得S=
,故填写2550.
解决该试题的关键是理解算法流程图是要我们拆如仔计算0+2+4+…+2n的和,直到2n>100时输出这个和,由此再结合等差数列的求和公式,不难得到本题的答案。

⑤ 算法与程序框图习题

一、选择题
1、根据算法的程序框图,当输入n=6时,输出的结果是( )

A.35 B.84

C.49 D.25
2、如图,汉诺塔问题是指有3根杆子A,B,C,杆子上有若干碟子,把所有的碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面,把B杆上的3个碟子全部移动到A杆上,最少需要移动的次数是( )
A.12 B.9 C.6 D.7
3、一程序框图如图1-1-25所示,它能判断任意输入的数x的奇偶性,其中判断框中的条件是( )

A.m=0 B.x=0 C.x=1 D.m=1

图1-1-25
4、阅读下面的程序框图并判断运行结果为…( )

A.55 B.-55

C.5 D.-5
5、给出下面的算法:该算法表示( )

S1 m=a;

S2 若b<m,则m=b;

S3 若c<m,则m=c;

S4 若d<m,则m=d;

S5 输出m.

A.a,b,c,d中最大值 B.a,b,c,d中最小值

C.将a,b,c,d由小到大排序 D.将a,b,c,d由大到小排序
6、下列关于算法的说法中,正确的是 ( )

A.求解某一类问题的算法是唯一的

B.算法必须在有限步操作之后停止

C.算法的每一步操作必须是明确的,不能有歧义或模糊

D.算法执行后一定产生确定的结果
7、算法共有三种逻辑结构,即顺序结构、条件分支结构和循环结构,下列说法正确的是( )

A.一个算法只能含有一种逻辑结构

B.一个算法最多可以包含两种逻辑结构

C.一个算法必须含有上述三种逻辑结构

D.一个算法可以含有上述三种逻辑结构的任意组合
8、下面的程序框图中是循环结构的是( )

A.①② B.②③ C.③④ D.②④
9、阅读下边的程序框图,若输入的n是100,则输出的变量S和T的值依次是( )
A.2 500,2 500 B.2 550,2 550

C.2 500,2 550 D.2 550,2 500
10、程序框是程序框图的一个组成部分,下面的对应正确的是 ( )

①终端框(起止框),表示一个算法的起始和结束 ②输入、输出框,表示一个算法输入和输出的信息 ③处理框(执行框),功能是赋值、计算 ④判断框,判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”

A.(1)与①,(2)与②,(3)与③,(4)与④

B.(1)与④,(2)与②,(3)与①,(4)与③

C.(1)与①,(2)与③,(3)与②,(4)与④

D.(1)与①,(2)与③,(3)与④,(4)与②
二、填空题
1、已知函数f(x)=|x-3|程序框图1-1-26表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填_______________,②处应填_______________.

图1-1-26

2、写出下列程序框图表示的算法功能.

(1)如1-1-14图(1)的算法功能是(a>0,b>b)____________________.

(2)如1-1-14图(2)的算法功能是_____________________.

图(1) 图(2)

图1-1-14

3、已知函数f(x)=|x-3|,下面的程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填___________________________________________________.

②处应填_______________________________________________________________________.
4、指出程序框图1-1-24运行结果.

图1-1-24

若输入-4,则输出结果为_______________.

三、解答题
1、写出求方程ax2+bx+c=0的根的算法,画出相应的程序框图,并要求输出它的实根.
2、写出一个求解任意二次函数y=ax2+bx+c(a≠0)的最值的算法.
3、一把石子,3个3个地数,最后余下2个;5个5个地数,最后余下3个;7个7个地数,最后余下4个.请设计一个算法,求出这把石子至少有多少个.

⑥ 高考文科数学全国二卷主要考哪些内容

选择有六七题是送旦羡分的,你不能保证全拿,先针对这类题:复数、集合、算法框晌孝图、线性规划、三角函数、解不等式、函数与方程。最后两道应该出的是比较难的,如果拿不下来就先跳过,高考要把握好时间。填空一般不会很难,最后一个可能比较难,题型和选择可能会重复,你多做做往年的卷子摸索规律就好了。再者就是大题的前三题:三角函数 概率立体 几何都是模谨拍大题中的送分题,拿全分。第四题可能就有点难了,不过应该也可以拿下来。最后两道是圆锥曲线和导数,大的知识点就是这些,至于和哪个知识点结合来考还不好说。认真做题,心态好,就没什么问题的。加油~

⑦ 根据如图的算法流程图,当输入x的值为3时,输出的结果为() A、5 B、6 C、7 D、8

考点: 程序框图 专题: 图表型 算法和程序框图 分析: 模拟执行程序框图,可得程序的功能是求分段函数y=x2-1x<52x-1x≥5的值,从而x=3时,满足侍烂条件x<5,y=8. 模拟执行程序框图,可得程序的功能是求分段函数y=x2-1x<52x-1x≥5的值,从而:x=3时,满足条件x<5,y=8,输出y的值为8.故选:D. 点评: 本题主要考查了程序框图和算法,正确理解程序如亮的老橡漏功能是解题的关键,属于基础题.

⑧ 算法框图是关于n个数据的样本a1,a2,a3,…,an的一个统计算法(1)写出程序框图中输出框t的表达式,并

(1)分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是计算依次输入的n个数a1,a2,…,an的算术平均数,
即晌戚t=

1
n
n
.

与算法框图高考真题文科相关的资料

热点内容
自动解压失败叫我联系客服 浏览:482
易语言新手源码 浏览:456
oa服务器必须有固定ip地址 浏览:42
传奇源码分析是什么 浏览:267
解放压缩机支架 浏览:255
程序员秃顶搞笑相遇 浏览:6
IBM手机app商店叫什么名字 浏览:834
jpeg压缩质量 浏览:774
云服务器评测对比 浏览:145
java日期转string 浏览:221
openfire源码编译 浏览:897
在线小工具箱引流网站源码 浏览:337
非科班程序员自学 浏览:800
压缩泡沫鞋底底材 浏览:219
程序员职场第一课2正确的沟通 浏览:679
遇到不合法app应该怎么办 浏览:91
汇编程序编译后的文件 浏览:80
大智慧均线源码 浏览:374
单片机排阻的作用 浏览:216
滴滴金融app被下架如何还款 浏览:212
© Arrange www.craffts.com 2012-2022
温馨提示:资料来源于互联网,仅供参考