㈠ 设计算法的原则
设计算法的原则:
1、正确性:算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需要、能够得到问题的正确答案。
2、可读性:设计算法的目的,一方面是为了让计算机执行,但还有一个重要的目的就是为了便于他人的阅读,让人理解和交流,自己将来也可阅读。如果可读性不好,时间长了自己都不知道写了什么,可读性是评判算法(也包括实现它的程序代码)好坏很重要的标志。
3、健壮性:当输入的数据非法时,算法应当恰当地做出反应或进行相应处理,而不是莫名其妙谈仿的输出含侍纤结果。并且处理出错的方法不应是中断程序的执行,而应是返回一个表示错误或错误性质的值,以便于在更高的抽象层次上谈仿进行处理。
4、高效率与低存储量:通常,算法的效率指的是算法的执行时间;算法的存储量指的是算法执行过程中所需要的最大存储空间,两者的复杂度都与问题的规模有关。算法分析的任务是对设计的每一个具体的算法,利用数学工具,讨论其复杂度,探讨具体算法对问题的适应性。
(1)一个好的算法要满足的要求是扩展阅读:
算法的“正确”通常在用法上有很大的差别,大体分为以下4个层次:
1、算法程序没有语法错误;
2、算法程序能够根据正确的输入的值得到满足要求的输出结果;
3、算法程序能够根据错误的输出的值满足规格说明的输出结果;
4、算法程序对于精心设计、极其刁难的测试数据都能满足要求的输出结果。
对于这4层含义,层次要求最低,因为仅仅没有语法错误实在谈不上是好的算法。而层次(4)是最困难的,人们几乎不可能逐一验证所有的输入都得到正确的结果。因此,算法的正确性在大部分情况下都不可能用程序来证明,而是用数学方法证明的。
㈡ 如何衡量一个算法的优劣有哪些标准
如何衡量一个算法的优劣,见人见智。一个好的算法首先是要能够满足场景的需求,其次是在能够最大限度的节省资源(最低成本原则),最后是实现逻辑简单,比较容易理解(本质上也是最低成本原则)。但是,在现实中硬件资源不变,算法不变情况下,算法执行的效率提高,相对应往往是资源消耗增加。一个合格的算法是在一个可以接受的范围内满足场景需求,而一个优秀的算法则是在满足场景需求的基础上,最大限度的节省资源,简化逻辑。
比如我要完成一项计算任务,要求是在5分钟执行完成。现在有算法1:需要执行1分钟,消耗内存8G;算法2需要执行3分钟,需要消耗内存256M。那么,我们应该如何选择呢?首先,这两种方案都能满足我们的需求;其次:算法1的需要消耗的资源是算法2的32倍,算法1的效率是算法2的3倍。在这种满足需求的情况下,往往更倾向于选择算法2。衡量一个算法的优劣往往要评估多方因素,结合实践,综合比较最终得出结论。
衡量一个算法的的标准主要有3个: 算法的执行效率 , 算法的内存消耗 和 算法的稳定性 。
㈢ 计算机算法必须具备哪5个特性
1、有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2、确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3、有零个或多个输入性。所谓输入是指在执行算法是需要从外界取得必要的信息。
4、有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5、有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
(3)一个好的算法要满足的要求是扩展阅读
计算机算法的产生背景:
欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。
因为查尔斯·巴贝奇未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。
㈣ 数据结构中评价一个好的算法,应该从哪几个方面来考虑
数据结构中评价一个好的算法,应该从四个个方面来考虑,分别是:
一、算法的正确性。
二、算法的易读性。
三、是算法的健壮性。
四、是算法的时空效率(运行)。
算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现,为了全面的反映一个数据的逻辑结构,它在存储器中的映象包括两方面内容,即数据元素之间的信息和数据元素之间的关系。
不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新和排序等。
(4)一个好的算法要满足的要求是扩展阅读:
分类
1、集合结构。该结构的数据元素间的关系是“属于同一个集合”。
2、线性结构。该结构的数据元素之间存在着一对一的关系。
3、树型结构。该结构的数据元素之间存在着一对多的关系。
4、图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。
㈤ 评价算法的四个标准是什么
评价算法的四个标准:
1.正确性
能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。
2.易读性
易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。
3.健壮性
输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。
4.时空性
算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。
算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。
(5)一个好的算法要满足的要求是扩展阅读:
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。
(1)、有穷性
一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。
(2)、确定性
算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。
(3)、可行性
一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。
(4)、输入
一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。
(5)、输出
一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。
㈥ 一个完整的计算机算法必须满足哪几个准则,做简要说明
一个算法必须具备以下性质:
(1)算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。
(2)算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。
(3)每个步骤都有确定的执行顺序,即上一步在哪里;下一步是什么,都必须明确,无二义性。
(4)无论算法有多么复杂,都必须在有限步之后结束并终止运行;即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。
㈦ 评价一个算法性能好坏的重要标准是
1、时间复杂度
算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做宽咐。
3、正确性
算法的正滚旦确性是评价一个算法优劣的最重要的标准。
4、可读性
算法的可读性是指一个算法可供人们阅读的容易程度。
5、健壮性
健壮性是指一个算法对不合理数据输大巧扰入的反应能力和处理能力,也称为容错性。
㈧ 一个好的算法应该具备哪些特征
一个好的算法应该具亩悔备以下特征:
正确性:算法应该正确地解决问题,并且没有明显的错误。
易于理解:算法应该清晰明了,容易理解,易于实现和调试。
可证明性:算法应该有明确的证明,证明其正确性和最优性。
效率:算法应该具有较高的效率,能够在可接受的时间内完成计算。
稳定性:算法的结果应该稳定,不会随着数据的变化而变化。
适用性:算法应该适用于不同的数据类型和规模
可源耐源扩展性:算法应该具有可扩展性,能够适应不断增长的数据量。
雹态
㈨ 算法的基本要求有哪些
1、有穷性: 一个算法必须碧宴保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法雹改有一个或多个输出,以反映对输入数据加工后的结果.没有输出的悔肆银算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成.
㈩ 衡量一个算法好坏的主要标准是代码短( )
衡量一个算法好坏的标准是( ).
A . 运行速度快
B .占用空间少
C .时间复杂度低
D .代码短
答案: C 时间复杂度低。
衡量一个算法好坏的标准,包括以下三方面:
1.算法的执行效率
往往和算法本身以及具体的数据有关系。通常会从3个维度的时间复杂度来衡量算法的的执行效率: 最好情况
时间复杂度,最坏情况时间复杂度和平均情况时间复杂度。
2.算法的内存消耗
算法的内存消耗:往往和算法本身有关系。可以通过调整算法,以空间换时间来提升算法的执行效率。
3.算法的稳定性
算法的执行效率随着数据规模增长的变化也是衡量算法的稳定性的一个因素;同时,算法的内存消耗和数据规
如何衡量一个算法敏高的优劣,见人见智。一个好的算法首先是要能够满足场景乎腊的需求,其次是在能够最大限度的
节省资源(最低成本原则),最后是实现逻辑简单,比较容易理解(本质上也是最低成本原则)。
但是,在现实中硬件资源不变,算法不变情况岁拿滑下,算法执行的效率提高,相对应往往是资源消耗增加。一个合
格的算法是在一个可以接受的范围内满足场景需求,而一个优秀的算法则是在满足场景需求的基础上,最大限度的节省资源,简化逻辑。