㈠ 人工智能十大算法
人工智能十大算法如下
线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值!
逻辑回归(Logistic regression)与线性回归类似,但它是用于输出为二进制的情况(即,当结果只能有两个可能的值)。对最终输出的预测是一个非线性的S型函数,称为logistic function, g()。
决策树(Decision Trees)可用于回归和分类任务。
朴素贝叶斯(Naive Bayes)是基于贝叶斯定理。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果。看看下面的方程式。
支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。
K-最近邻算法(K-Nearest Neighbors,KNN)非常简单。KNN通过在整个训练集中搜索K个最相似的实例,即K个邻居,并为所有这些K个实例分配一个公共输出变量,来对对象进行分类。
K-均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到K个聚类。K-均值用于无监督学习,因此,我们只需使用训练数据X,以及我们想要识别的聚类数量K。
随机森林(Random Forest)是一种非常流行的集成机器学习算法。这个算法的基本思想是,许多人的意见要比个人的意见更准确。在随机森林中,我们使用决策树集成(参见决策树)。
由于我们今天能够捕获的数据量之大,机器学习问题变得更加复杂。这就意味着训练极其缓慢,而且很难找到一个好的解决方案。这一问题,通常被称为“维数灾难”(Curse of dimensionality)。
人工神经网络(Artificial Neural Networks,ANN)可以处理大型复杂的机器学习任务。神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。在输入层和输出层之间,我们可以插入多个隐藏层。人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习。
㈡ 人工智能需要什么基础
算法、算力、数据作为人工智能(AI)核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态。随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新。让人类社会从信息化进入智能化。
(1)文艺复兴后的人工神经网络。
人工神经网络是一种仿造神经元运作的函数演算,能接受外界资讯输入的刺激,且根据不同刺激影响的权重转换成输出的反应,或用以改变内部函数的权重结构,以适应不同环境的数学模型。
(2)靠巨量数据运作的机器学习。
科学家发现,要让机器有智慧,并不一定要真正赋予它思辩能力,可以大量阅读、储存资料并具有分辨的能力,就足以帮助人类工作。
(3)人工智能的重要应用:自然语言处理。
自然语言处理的研究,是要让机器“理解”人类的语言,是人工智能领域里的其中一项重要分支。
自然语言处理可先简单理解分为进、出计算机等两种:
其一是从人类到电脑──让电脑把人类的语言转换成程式可以处理的型式;
其二是从电脑回馈到人──把电脑所演算的成果转换成人类可以理解的语言表达出来。
㈢ 人工智能需要什么基础
人工智能需要什么基础?
人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,你要有一定的哲学基础,有科学方法论作保障。这些学科的每一门都是博大精深的,但同时很多事物都是相通的,你学了很多知识有了一定的基础的时候再看相关知识就会触类旁通,很容易。在这中间关键是要有自己的思考,不能人云亦云,毕竟人工智能是一个正在发展并具有无穷挑战和乐趣的学科,如果你对人工智能感兴趣,那欢迎到网络的人工智能吧做客,那里有对人工智能丰富而深刻的讨论。
需要必备的知识有: 1、线性代数:如何将研究对象形式化? 2、概率论:如何描述统计规律? 3、数理统计:如何以小见大? 4、最优化理论: 如何找到最优解? 5、信息论:如何定量度量不确定性? 6、形式逻辑:如何实现抽象推理? 7、线性代数:如何将研究对象形式化?人工智能简介: 1、人工智能(Artificial Intelligence),英文缩写为AI。 2、它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能涉及的学科: 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
1.人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。
2. 人工智能是包括十分广泛的科学,它由不同的领域组成。入门最基本的的知识是:机器学习、机械原理、计算机原理、计算机视觉等等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。