导航:首页 > 源码编译 > 数据结构中的经典算法

数据结构中的经典算法

发布时间:2023-05-18 11:40:45

‘壹’ 数据结构中有哪些基本算法

数据结构中的基本算法有查找,排序,快速排序,堆排序,归并排序,二分搜索算法等等,数据结构是指相互之间存在一种或多种特定关此唤系的数据元素的集合。

数据结构是计算机液扒腊存储、组织数据的方式。通常情况下,精心选择的数据结构可闹滑以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

‘贰’ 数据结构算法有哪些

数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。

可以理解为:程序设计 = 数据结构 + 算法

数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。

1、输入:一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");

2、输出:算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。

3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。

4、确定性:算法的灶举每个步骤都有确定的含义,不会出现二义性。

5、可行性:算法是可用的,也就是能够解决当前问题。慧辩弊

数据结果的基本算法有:

1、图搜索(广度优先、深度优先)深度优前族先特别重要

2、排序

3、动态规划

4、匹配算法和网络流算法

5、正则表达式和字符串匹配

6、三路划分-快速排序

7、合并排序(更具扩展性,复杂度类似快速排序)

8、DF/BF 搜索 (要知道使用场景)

9、Prim / Kruskal (最小生成树)

10、Dijkstra (最短路径算法)

11、选择算法

‘叁’ 面试经典数据结构和算法汇总

如果说数据结构是骨架,那么算法就是灵魂。没了骨架,灵魂没有实体寄托;没了灵魂,骨架也是个空壳。两者相辅相成,缺一不可,在开发中起到了砥柱中流的作用。

现在我对各种数据结构和算法做一总结,对比一下它们的效率

1.数据结构篇
1. 如果让你手写个栈和队列,你还会写吗?
2. 开发了那么多项目,你能自己手写个健壮的链表出来吗?
3. 下次面试若再被问到二叉树,希望你能对答如流!
4. 面试还在被红-黑树虐?看完这篇轻松搞定面试官 !

2.排序算法篇
1. 几个经典的基础排序算法,你还记得吗?
2. 手把手教你学会希尔排序,很简单!
3. 快速排序算法到底有多快?
4. 五分钟教你学会归并排序
5. 简单说下二叉树排序
6. 学会堆排序只需要几分钟
7. 图,这个玩意儿竟然还可以用来排序!

掌握了这些经典的数据结构和算法,面试啥的基本上没什么问题了,特别是对于那些应届生来说。接下来再总结一下不同数据结构和算法的效率问题,做一下对比,这也是面试官经常问的问题。

数据结构常用操作效率对比:

常用排序算法效率的对比:

关于经典的数据结构和算法,就总结到这,本文建议收藏,利用等公交、各种排队之时提升自己。这世上天才很少,懒蛋却很多,你若对得起时间,时间便对得起你。

‘肆’ 数据结构必须掌握的算法有哪些

主要是树的遍历,查找,替换和删除。图的遍历。(bfs,dfs)查找里面的二叉树查找
,平均数查找,harsh查找八大排序注意图和树的算法因存储结构不同而不同。其他的如表了什么的,应该不是很难。是必须会的

‘伍’ 数据结构中常用的算法有哪些啊

基本:
线性表,链表,栈,队列
排序:
快速排序,堆排序,归并排序,希尔排序,插入排序,选择排序
二叉树:
前序,中序,后序遍历,层次遍历,包括递归算法和非递归算法两种
AVL树,Huffman编码
二叉树和树,森林之间的转换,穿线树
图算法:
深度优先遍历算法,广度优先遍历算法,最小生成树,最短路径
字符串:
查找子串,KMP算法

以上都是比较基本的算法,一定要弄懂

‘陆’ 数据结构串匹配十大经典算法

1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos个字符之后的位置。若不存在,则函数值为0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。

int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函数值求T在主串S中第pos 个字符之后的位置的KMP算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函数:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next

我现在只有这两个答案。

‘柒’ 程序员开发用到的十大基本算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

‘捌’ 计算机考研:数据结构常用算法解析(7)

第七章:
对于无向图,e的范围是:
数据结构中所讨论的图都是简单图,任意两结点间不会有双重的边。
对于有向图,e的范围是:
图的各种存储结构
邻接矩阵很方便访问任意两点的边,但是不方便计算其邻接点。在深度和广度遍历中广泛的需要求某点的邻接点。所以邻接矩阵只在Floyed和Prim和Dijstra中采用。
邻接表能很方便的求某顶点的邻接点,索引对于与遍历有关的算法大多都采用邻接表。如深度、广度、拓扑排序、关键路径。但他也有不足的地方,就是不方便求入度或是那些薯早握点可以到他的操作。所以有人引进逆邻接表。最后人们把这两种表结合到一起就是十字链表和邻接多重表。一个是存储有向图,另一个是存储无向图。
在十字链睁历表和邻接多重表很方便求邻接点的操作和对应的逆操作。所以实际应用中,凡是能用邻接表实现的一定能用十字链表和邻接多重表实现。并且它们的存储效率更高。
1.邻接矩阵(有向图和无向图和网)又称为数组表示法
typedef struct
{ vextype vexs[maxn]; ∥顶点存储空间∥
adjtype A[maxn][maxn]; ∥邻接矩阵∥
int vexnum,arcnum; //图的顶点数和边数
GraphKind Kind; //图的类型
} mgraph;
2.邻接表(有向图和无向图和网)
typedef struct node ∥边
{ int adj; int w; ∥邻接点、权∥
struct node *next; ∥指向下一弧或边∥
}linknode;
typedef struct ∥顶点类型∥
{ vtype data; ∥顶点值域∥
linknode *farc; ∥指向与本顶点关联的第一条弧或边∥
}Vnode;
typedef struct
{
Vnode G[maxn]; ∥顶点表∥
int vexnum,arcnum;
GraphKind kind;
}ALGraph;
adjvexnextarcinfo
边结点
datafirstarc
顶点结点
3.十字链表(有向图和有向网)
headvextaivexhlinktlinkinfo
边结点
datafirstinfirstout
顶点结点
4.邻接多重表(无向图)
markivexjvexilinkjlinkinfo
边结点
datafirstedge
顶点结点
有向无环图(DAG):是描述含有公共子式的表达式的有效工具。二叉树也能表示表达式,但是利用有向无环图可以实现对相同子式的共享,从而节省存储空间。
顶点的度:
无向图:某顶点V的度记为D(V),代表与V相关联的边的条数
有向图:顶点V的度D(V)=ID(V)+OD(V)
强连通分量:在有向图中,若图中任意两顶点间都存在路径,则称其是强连通图。图中极大 强连通子图称之为强连通分量
“极大”在这里指的是:往一个连通分量中再加入顶点和边,就构不成原图中的一个 连通子图,即连通分量是一个最大集的连通子图。有向图的连通就是指该有向图是强连通的。

考研有疑问、不知道如何总结考研考点内容、不清楚数庆考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/

‘玖’ 数据结构有哪些基本算法

一、排序算法 1、有简单排序(包括冒泡排序、插入排序、选择排序) 2、快速排序,很常见的 3、堆排序, 4、归并排序,最稳定的,即没有太差的情况 二、搜索算法 最基础的有二分搜索算法,最常见的搜索算法,前提是序列已经有序 还有深度优先和广度有限搜索;及使用剪枝,A*,hash表等方法对其进行优化。 三、当然,对于基本数据结构,栈,队列,树。都有一些基本的操作 例如,栈的pop,push,队列的取队头,如队;以及这些数据结构的具体实现,使用连续的存储空间(数组),还是使用链表,两种具体存储方法下操作方式的具体实现也不一样。 还有树的操作,如先序遍历,中序遍历,后续遍历。 当然,这些只是一些基本的针对数据结构的算法。 而基本算法的思想应该有:1、回溯2、递归3、贪心4、动态规划5、分治有些数据结构教材没有涉及基础算法,lz可以另外找一些基础算法书看一下。有兴趣的可以上oj做题,呵呵。算法真的要学起来那是挺费劲。

‘拾’ 数据结构经典算法有哪些

二叉树遍历:
status initqueue(Queue &Q)
{//初始化一个空队列
Q.base=(QElemtype *)malloc(MAXSIZE*sizeof(QElemtype));
if(!Q.base)
exit(OVERFLOW);
Q.front=Q.rear=0;
return OK;
}

status inqueue(Queue &Q,BiTree e)
{//将元素e入队
if((Q.rear+1)%MAXSIZE==Q.front)
return ERROR;
Q.base[Q.rear]=e;
Q.rear=(Q.rear+1)%MAXSIZE;
return OK;
}

status outqueue(Queue &Q,BiTree &e)
{//删除队头元素,并用e返回其值
if(Q.front==Q.rear)
return ERROR;
e=Q.base[Q.front];
Q.front=(Q.front+1)%MAXSIZE;
return OK;
}

status emptyqueue(Queue Q)
{//若队列空,返回TRUE,否则返回FALSE
if(Q.front==Q.rear)
return TRUE;
return FALSE;
}

//以下是二叉树的算法
void creattree(BiTree &t)
{//先序顺序建立二叉树t
char ch;
ch=getchar();
if(ch==' ')
{
t=NULL;
return;
}
t=(BiTree)malloc(sizeof(BiNode));
if(!t) exit(OVERFLOW);
t->data=ch;
creattree(t->lchild);
creattree(t->rchild);
}
void print(TElemtype e)
{
printf("%c",e);
}
void pretraverse(BiTree t, void (*visit)(TElemtype e))
{//先序遍历二叉树t
if(t)
{
(*visit)(t->data);
pretraverse(t->lchild,visit);
pretraverse(t->rchild,visit);
}
}

void intraverse(BiTree t, void (*visit)(TElemtype e))
{//中序遍历二叉树t
if(t)
{
intraverse(t->lchild,visit);
(*visit)(t->data);
intraverse(t->rchild,visit);
}
}

void posttraverse(BiTree t, void (*visit)(TElemtype e))
{//后序遍历二叉树t
if(t)
{
posttraverse(t->lchild,visit);
posttraverse(t->rchild,visit);
(*visit)(t->data);
}
}

void leveltraverse(BiTree t, void (*visit)(TElemtype e))
{//层次遍历二叉树t
BiNode *p;
Queue Q;
//if(!t) return;
initqueue(Q);
p=t;
inqueue(Q,p);
while(!emptyqueue(Q))
{
outqueue(Q,p);
if(p)
{

(*visit)(p->data);
inqueue(Q,p->lchild);
inqueue(Q,p->rchild);
}
}

}

void destroytree(BiTree &t)
{
if(t==NULL) return;
else if(t->lchild==NULL&&t->rchild==NULL)
{
free(t);
return;
}
else{
destroytree(t->lchild);
destroytree(t->rchild);
free(t);
return;
}
}

阅读全文

与数据结构中的经典算法相关的资料

热点内容
银河v10驱动重编译 浏览:889
电脑上文件夹右击就会崩溃 浏览:689
右美维持算法 浏览:938
php基础编程教程pdf 浏览:219
穿越之命令与征服将军 浏览:351
android广播重复 浏览:832
像阿里云一样的服务器 浏览:318
水冷空调有压缩机吗 浏览:478
访问日本服务器可以做什么 浏览:433
bytejava详解 浏览:448
androidjava7 浏览:385
服务器在山洞里为什么还有油 浏览:886
天天基金app在哪里下载 浏览:974
服务器软路由怎么做 浏览:292
冰箱压缩机出口 浏览:229
OPT最佳页面置换算法 浏览:645
网盘忘记解压码怎么办 浏览:853
文件加密看不到里面的内容 浏览:654
程序员脑子里都想什么 浏览:434
oppp手机信任app在哪里设置 浏览:189