导航:首页 > 源码编译 > 音频去噪算法

音频去噪算法

发布时间:2023-05-18 13:43:19

‘壹’ 如何给音频降噪

给音频降噪:以Adobe Audition CS6为例给声音降噪(其他版本操作基本相同):
1:运行Audition CS6,并在单轨打开要处理的音频文件缺汪;
2:在波形上选取一段有代表性的噪音部分(这一步很重要,降噪效果的好坏和采样样本的选取有直接关系,可对整个音频文件的波形伏明仔仔细观察、聆听后,选有代表性的一段);
3:点:效果--降噪/修复--降噪;在弹出的效槐首果-降噪对话框里点:捕捉样本特性,等采样完毕点应用;
4:关闭效果-降噪对话框后,全选波形,点:效果--降噪/修复--降噪;点应用;
4:处理完试听满意保存文件就可以了。
满意我的回答请及时采纳!

‘贰’ 如何有效去除音频中的噪音

也就是我们常说的降噪处理。
如果对音质要求不高,例如情景声音、电话录音,一般的音频编辑软件都能降噪,例如Adobe Audition,CoolEdit Pro,GoldWave等等这些小软件就能胜任。
如果对音质要求相对较高的话,例如歌曲人声,背景音乐,就需要相对更专业的软件了。既然是音乐制作,你一定有一个大型的宿主软件或者工作站,这些工作站中内置的录音软件一般都能降噪。WaveArts专门用于降噪/修复音频用的效果器包Restoration系列不错,售价很高,网上有XX版。
专业噪音消除软件Diamond Cut DC Live Forensics也拥有良好的口碑,它提供了更加细致的降噪参数调节和更加广泛的降噪途径选择,而且能够做到Live现场降噪,移除大量有害电平和噪声。
作为音乐制作人应该了解到后期的降噪并不是万能的,只是对不完美的音频的修补,在保留有价值声音的同时有的噪声甚至无法消除,所以前期录音时应该最大限度的过滤掉录音环境的噪音保证声音的干净。

‘叁’ Python 简单的扩音,音频去噪,静音剪切

数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作一个以时间为下标的数组。比如,x[n],n为整数。比如下图是一个正弦信号(n=0,1, ..., 9):

对于任何的音频文件,实际上都是用这种存储方式,比如,下面是对应英文单词“skip”的一段信号(只不过由于点太多,笔者把点用直线连接了起来):

衡量数字信号的 能量(强度) ,只要简单的求振幅平方和即可:

我们知道,声音可以看作是不同频率的正弦信号叠加。那么给定一个声音信号(如上图),怎么能够知道这个信号在不同频率区段上的强度呢?答案是使用离散傅里叶变换。对信号x[n], n=0, ..., N-1,通常记它的离散傅里叶变换为X[n],它是一个复值函数。

比如,对上述英文单词“skip”对应的信号做离散傅里叶变换,得到它在频域中的图像是:

可以看到能量主要集中在中低音部分(约16000Hz以下)。

在频域上,也可以计算信号的强度,因为根据Plancherel定理,有:

对于一般的语音信号,长度都至少在1秒以上,有时候我们需要把其中比如25毫秒的一小部分单独拿出来研究。将一个信号依次取小段的操作,就称作分帧。技术上,音频分帧是通过给信号加一系列的 窗 函数 实现的。

我们把一种特殊的函数w[n],称作窗函数,如果对所有的n,有0<=w[n]<=1,且只有有限个n使得w[n]>0。比如去噪要用到的汉宁窗,三角窗。

汉宁窗

三角窗

我们将平移的窗函数与原始信号相乘,便得到信号的“一帧”:

w[n+d]*x[n]

比如用长22.6毫秒的汉宁窗加到“skip”信号大约中间部位上,得到一帧的信号:

可见除一有限区间之外,加窗后的信号其他部分都是0。

对一帧信号可以施加离散傅里叶变换(也叫短时离散傅里叶变换),来获取信号在这一帧内(通常是很短时间内),有关频率-能量的分布信息。

如果我们把信号按照上述方法分成一帧一帧,又将每一帧用离散傅里叶变换转换到频域中去,最后将各帧在频域的图像拼接起来,用横坐标代表时间,纵坐标代表频率,颜色代表能量强度(比如红色代表高能,蓝色代表低能),那么我们就构造出所谓 频谱图 。比如上述“skip”发音对应的信号的频谱图是:

(使用5.8毫秒的汉宁窗)

从若干帧信号中,我们又可以恢复出原始信号。只要我们适当选取窗口大小,以及窗口之间的平移距离L,得到 ..., w[n+2L], w[n+L], w[n], w[n-L], w[n-2L], ...,使得对k求和有:

从而简单的叠加各帧信号便可以恢复出原始信号:

最后,注意窗函数也可以在频域作用到信号上,从而可以起到取出信号的某一频段的作用。

下面简单介绍一下3种音效。

1. 扩音

要扩大信号的强度,只要简单的增大信号的“振幅”。比如给定一个信号x[n],用a>1去乘,便得到声音更大的增强信号:

同理,用系数0<a<1去乘,便得到声音变小的减弱信号。

2. 去噪(降噪)

对于白噪音,我们可以简单的用“移动平均滤波器”来去除,虽然这也会一定程度降低声音的强度,但效果的确不错。但是,对于成分较为复杂,特别是频段能量分布不均匀的噪声,则需要使用下面的 噪声门 技术,它可以看作是一种“多带通滤波器”。

这个特效的基本思路是:对一段噪声样本建模,然后降低待降噪信号中噪声的分贝。

更加细节的说,是在信号的若干频段f[1], ..., f[M]上,分别设置噪声门g[1], ..., g[M],每个门都有一个对应的阈值,分别是t[1], ..., t[M]。这些阈值时根据噪声样本确定的。比如当通过门g[m]的信号强度超过阈值t[m]时,门就会关闭,反之,则会重新打开。最后通过的信号便会只保留下来比噪声强度更大的声音,通常也就是我们想要的声音。

为了避免噪声门的开合造成信号的剧烈变动,笔者使用了sigmoid函数做平滑处理,即噪声门在开-关2个状态之间是连续变化的,信号通过的比率也是在1.0-0.0之间均匀变化的。

实现中,我们用汉宁窗对信号进行分帧。然后对每一帧,又用三角窗将信号分成若干频段。对噪声样本做这样的处理后,可以求出信号每一频段对应的阈值。然后,又对原始信号做这样的处理(分帧+分频),根据每一帧每一频段的信号强度和对应阈值的差(diff = energy-threshold),来计算对应噪声门的开合程度,即通过信号的强度。最后,简单的将各频段,各帧的通过信号叠加起来,便得到了降噪信号。

比如原先的“skip”语音信号频谱图如下:

可以看到有较多杂音(在高频,低频段,蓝色部分)。采集0.25秒之前的声音作为噪声样本,对信号作降噪处理,得到降噪后信号的频谱图如下:

可以明显的看到大部分噪音都被清除了,而语音部分仍完好无损,强度也没有减弱,这是“移动平均滤波器”所做不到的。

3. 静音剪切

在对音频进行上述降噪处理后,我们还可以进一步把多余的静音去除掉。

剪切的原理十分简单。首先用汉宁窗对信号做分帧。如果该帧信号强度过小,则舍去该帧。最后将保留的帧叠加起来,便得到了剪切掉静音部分的信号。

比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:

‘肆’ “APTX”是什么意思

Apt-X是一种基于子带ADPCM(SB-ADPCM)技术的数字音频压缩算法。原始算塌颤陵法由Stephen Smyth 博士于20世纪80年代提出。由Audio Processing Technology(现已被CSR合并)公司发展并命名为apt-X。最初用于专业音频与广播领域。

主要用于专业音频领域,提供高品质的音频。其特点是:

①压缩率:4:1(aptX Live 为8:1,SBC为3:1到6:1之间);

②Word Depth:支持16bit,24bit音频(aptX Enhanced还支持20bit音频);团戚

③编解码延时:采样频率48kHZ时<2ms;(SBC为2.5ms+缓冲时间)。

(4)音频去噪算法扩展阅读

功能洞返:

1、aptX 编解码技术可输出 CD 级音质,因此多年来一直是音乐行业、公共广播机构和电影制片厂的秘密武器。

2、Bluetooth® 受最大可用带宽限制,因此并非始终适合传送高品质音频。

3、aptX 通过在不影响音频质量或导致延迟问题的情况下显着压缩比特率,带来前所未有的 Bluetooth® 立体声聆听体验。

‘伍’ 滤波器如何去除系统中的白噪音如何去除

七种滤波去噪⽅式

1.巴特沃斯低通滤波器去噪

从图上可以看出巴特沃袜卜斯低通滤波器对信号⼀的滤波效果还是可以的,主要是因为有效的信号最⾼频率才30Hz,本程序将50Hz以上的信号全部滤除,通过的频率成分中仍然是有⽩噪声的。

对于信号⼆,滤波后的信号与没有加噪声的信号相⽐就有搭如失真了,上升沿和下降沿的⾼频信号被滤除了。

2.FIR低通滤波器去噪

3. 移动平均滤波去噪

从上图可以看出,⽆论是对信号⼀还是对信号⼆,中值滤波的滤波效果都是很不错,特备是对于信号⼆,上升沿和下降失真⽐较的⼩。5. 维纳滤波去噪

维纳滤波器属于现代滤波器,传统的滤波器只能滤除信号和⼲扰频带没有重叠的情况,当信号和⼲扰频带有重叠的时候传统滤波器将⽆能为⼒,这时就需要⽤到现代滤波器,现代滤波器利⽤信号和⼲扰的统计特征(如⾃相关函数、功率谱等)导出⼀套最佳估值算法,然后⽤硬件或软件予以实现。

维纳滤波是以均⽅误差最⼩( LMS(Least MeanSquare) 为准则的,它根据过去观测值和当前观测值告枝穗来估计信号的当前值,因此它的解

6. ⾃适应滤波去噪

维纳滤波器参数是固定的,适合于平稳随机信号。卡尔曼滤波器参数是时变的,适合于⾮平稳随机信号。然⽽,只有在信号和噪声的统计特

本程序是基于LMS算法的⾃适应滤波,从上图可以看出,滤波效果也是很不错的,特别是对于信号⼆,上升沿有失真,下降沿保持还可以,最要的是得到的波形⼗分的平滑。由此可见⾃适应滤波极具使⽤价值。
7. ⼩波去噪

对于信号⼆,⼩波的去噪效果⾮常不错,虽然得到波形不是很平滑,但是上升沿和下降沿保持的⾮常⾼,基本可以看到棱⾓.

‘陆’ lms算法与谱减法都是语音去噪方面的算法,那他们都分别适用于哪样的声音中呢,还有各自的优缺点是啥

先说说谱减法,是通过付利叶变化在频域上实现操作,这就要求噪声和本真声音在频谱上有一定的区分度。

LMS算法是一种自适应算法,它的利用价值就是,倘若本真和噪声频谱完全重叠的话,那用频减法是没法实现的,于是它是按照对比匹配来进行滤波。

优缺点:
谱减法,直接快速,但是频谱重叠部分滤不到
LMS,重叠也能滤,缺点是基于逐次匹配,需要一段时间才能实现滤波效果,而且还滤的不完全干净

‘柒’ 如何对音频文件进行降噪

  1. 将我们的音频草稿拖入到素材窗。(ctrl+I,选择我们的素材)

  2. 双击我们的拍源宽音频草稿,将会在我们的操作窗口中出现波形文件。

  3. 鼠标放到 时间轴的最右边,向左拖动时间轴选框,放大时间轴。

  4. 观察音频文件,我们可以看到为录音部分1.2.3等处的噪音明裂轿显。

    (如果打开软件没有频谱频率窗口,可以按shift+D,调出来)

    1.2.3出便是我们需要的噪音采样,选择噪音采样的标准:1噪音时间足够的长,2没有录音.

  5. 选择噪音采样

    1.放大时间轴,知道我们可以轻松的选择噪音为止。

    2.点选噪音的末端,拖动鼠标到噪音的顶端。

    这样我们就选择了我们的噪音采样。

  6. 捕捉噪音样本

    效果-----降噪恢复-----捕捉噪音样本

    快捷键(shift+P)

  7. 全选音频文件,

    1.全部显示音频的时间轴,以便查看到全部的波形文件。

    2.ctrl+a全选音频

  8. 降噪处理

    效果-----降噪恢复-----降噪(处理)

    快捷键(ctrl+shift+P)

  9. 1.在弹出的效果-降噪界面中,调节降噪参数(80-95)之间,降噪幅度(30-50)之间,具体效果,因情况而定,降噪过大的话,音质就会失真。

    2.应袭亮用,等待效果处理完成。

  10. 试听,降噪效果明显好转。看图上,原来的噪音部分没有了,降噪成功.

  11. 导出音频文件,ctrl+shift+s,

  12. 设置自己导出的具体选项。完成

‘捌’ 如何除掉音频里的噪音

有一次开会,同事推荐浮云音频降噪软件,能去除音频里的噪音。

目前有很多软件可以实现音频和视频的降噪,但是经过实践检验,还是这个简单、高效。

它是一款智能化的音频优化工具,可实现视频降噪(降音频噪音)、音频降噪、调高音量、分割音频、合成音频及批量处理等功能。程序采用最先进的人工智能算法,可以极大消除音频中的风声、水声、电流声等多种噪声。



与此同时,还可以调高音量,最终导出高品质的音频文件。可满足各类采访录音、会议录音、电话录音等音频文件的降噪、提高音量、分割音频、合成音频等需求。

为什么说这个方法简单、高效呢?

一方面是操作简单,只需要添加文件,包括音频文件或者视频文件,然后选择结果的保存目录,点击开始降噪,就可以坐等结果了;

另一方面是因为浮云音频降噪软件,可以实现批量降噪,也就是说,如果有多条音频或者视频文件需要同时进行处理,它都可以一键实现,完成降噪的需求。

在其界面可以看到,降噪模式有两种,一种是智能降噪,另一种的常规降噪。正如上面所讲到的,噪音产生的原因是多种多样的,所以噪音的情况是很复杂的,软件提供两种模式供使用,增加处理的成功率。

另外,结果保存格式既有MP3,也有WAV,如果是视频文件的话,可以保存出一个音频文件,一个视频文件,视频是什么格式,文件结果就保存为什么格式。

值得注意的是,它的分割音频、合成音频的功能是免费的,而且如何想对格式进行转换也可以免费实现,通过免费功能实现格式转换为mp3等。

‘玖’ 网易云有降噪模式吗

有。基于信号处理的传统音频降噪算法对于 Stationary Noise(平稳噪声)有比较好的降噪效果。但是对于 Non-stationary Noise(非平稳噪声),特别是 Transient Noise(突发噪声)降噪效果较差,而且有些方法对于语音也有较大的损伤。

网易云音乐Music Buds耳机,主要的手感就是轻和圆润,整机重量在40g以下,与市面上其他TWS耳机相比,Music Buds耳机的轻量便携性更好。目前Music Buds耳机有黑色款和白色款,配色的选择度不高,建议后续考虑加入红尺扰粗色、绿色、蓝色、粉色等配色,这样更能满足年轻人的个性需求。

充电盒表面的磨砂质感还是不错的,边角处理圆润,切角光滑无毛刺,整体的制造工艺还是陵镇值得称赞的。

网易云音乐Music Buds耳机在满电状态下,实测开启降噪连续使用4小时后,耳机的剩余电量为32%,所以标准模式下可以达到官方宣称的7个小时。

另外李悉充电盒也能提供额外4次的充电,耳机的综合续航能力约为35小时。一周充一次电就能满足一周的使用要求,日常使用时无需可以关注耳机的充电问题,可以说是很省心了。

‘拾’ 用小波分析法除去音频信号的噪声

小波变换及其应用是八十年代后期发展起来的应用数学分支,被称为“Fourier分析方法的突破性进展[1]”。 1986年Meyer Y构造了一个真正的小波基,十多年间小波分析及其应用得到了迅速发展,原则上传统的傅里叶分析可用小波分析方法取代[2],它能对几乎所有的常见函数空间给出通过小波展开系数的简单刻划,也能用小波展开系数描述函数的局部光滑性质,特别是在信号分析中,由于它的局部分析性能优越,因而在数据压缩与边缘检测等方面它比现有的手段更为有效[3-8]。 小波变换在图像压缩中的应用因它的高压缩比和好的恢复图像质量而引起了广泛的注意,且出现了各种基于小波变换的图像压缩方案。
小波变换自1992年Bos M等[9]首先应用于流动注射信号的处理,至今虽才8年时间,但由于小波变换其优良的分析特性而迅速渗透至分析化学信号处理的各个领域。本文介绍了小波变换的基本原理及其在分析化学中的应用情况。
1 基本原理
设f(t)为色谱信号,其小波变换在L2(R)中可表示为:

其中a, b∈R,a≠0,参数a称为尺度因子b为时移因子,而(Wf)(b, a)称为小波变换系数,y(t)为基本小波。在实际分析化学信号检测中其时间是有限长度,f(t)通常以离散数据来表达,所以要采用Mallat离散算法进行数值计算,可用下式表示:
fj+1=θj + f j
其中:N为分解起始尺度;M为分解次数;fj和qj可由下式求得:

此处:Φj, m为尺度函数;Ψj, m 为小波函数;系数Cmj ,dmj可由下式表达:

hk-2m , gk-2m取决于小波母函数的选取。
用图表示小波分解过程如下:

图中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分别称为在尺度N上的低频分量和高频分量。上述分解过程的逆过程即是信号的重构过程。
2 分析化学中的应用
根据小波变换基本原理及其优良的多分辩分析特性,本文将小波变换在分析化学信号处理中的应用划归为以下三个方面:
2.1 信号的滤波
小波滤波方法目前在分析化学中应用主要是小波平滑和小波去噪两种方法。小波平滑是将某一信号先经小波分解,将在时间域上的单一信号分解为一系列不同尺度上的小波系数(也称不同频率上的信号), 然后选定某一截断尺度,使高于此尺度的小波系数全部为零,再重构信号,这样就完成了一个低通小波滤波器的设计;而小波去噪,则是在小波分解基础上选定一阈值,对所有尺度空间的小波系数进行比较,使小于此阈值的小波系数为零,然后重构信号[10]。
邵利民[11]等首次将小波变换应用于高效液相色谱信号的滤波,他们应用了Haar小波母函数,由三次小波分解后所得的低频部分重构色谱信号,结果成功地去除了噪声,明显地提高了色谱信号的信噪比,而色谱峰位保持一致,此法提高了色谱的最低检测量和色谱峰的计算精度。董雁适[12]等提出了基于色谱信号的小波自适应滤波算法,使滤波与噪声的频带分布,强度及信噪在频带上的交迭程度基本无关,具有较强的鲁棒性。
在光谱信号滤噪中的应用,主要为红外光谱和紫外光谱信号滤噪方面的应用,如Bjorn K A[13]等将小波变换用于红外光谱信号的去噪,运用6种不同的小波滤噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)对加噪后红外光谱图进行了去噪,针对加噪与不加噪的谱图,对Fourier变换、移动平均滤波与小波滤波方法作了性能比较研究,结果认为Fourier变换、移动平均滤波等标准滤波方法在信噪比很低时滤噪性能与小波滤波方法差不多,但对于高信噪比的信号用小波滤噪方法(特别是HYBRID和VISU)则更有效 。闵顺耕[14]等对近红外漫反射光谱进行了小波变换滤波。顾文良[15]等对示波计时电信号进行了滤噪处理。王立世[16]等对电泳信号也做了小波平滑和去噪,都取得了满意的效果。邹小勇[17]等利用小波的时频特性去除了阶跃伏安信号中的噪音,并提出了样条小波多重滤波分析方法,即将过滤后的高频噪音信号当成原始信号进行滤波处理,使之对有用信号进行补偿。鲍伦军等[18]将样条小波和傅里叶变换联用技术应用于高噪音信号的处理。另外,程翼宇[19]等将紫外光谱信号的滤噪和主成分回归法进行了有机的结合,提出了小波基主成分回归(PCRW)方法,改善了主成分回归算法。
2.1 信号小波压缩
信号经小波分解之后,噪音信号会在高频部分出现,而对于有用的信号分量大部分在低频部分出现,据此可以将高频部分小波系数中低于某一阈值的系数去除,而对其余系数重新编码,只保留编码后的小波系数,这样可大大减少数据贮存量,达到信号压缩的目的。
在近代分析化学中分析仪器的自动化水平在不断提高,分析仪器所提供的数据量越来越大。寻找一种不丢失有效信息的数据压缩方法,节省数据的贮存量,或降低与分析化学信息处理有关的一些算法的处理量,已成为人们关心的问题。Chau F T等[20]用快速小波变换对模拟和实验所得的紫外可见光谱数据进行了压缩,讨论了不同阶数的Daubechies小波基、不同的分解次数及不同的阈值对压缩结果的影响。Barclay V J和Bonner R F[10]对实验光谱数据作了压缩,压缩率可达1/2~1/10,并指出在数据平滑和滤噪的同时,也能进行数据的压缩是小波有别与其他滤波方法的一大特点。王洪等[21]用Daubechies二阶正交小波基对聚乙烯红外光谱进行了成功的压缩,数据可压缩至原来的1/5以下。邵学广等[22]对一维核磁共振谱数据作了小波变换压缩,分别对常用的Haar、Daubechies以及Symmlet小波基作了比较,其结果表明准对称的Symmlet小波基对数据的复原效果最佳,而且在压缩到64倍时,均方差仍然较小。章文军等[23]提出了常用小波变换数据压缩的三种方法,将紧支集小波和正交三次B-样条小波压缩4-苯乙基邻苯二甲酸酐的红外光谱数据进行了对比,计算表明正交三次B-样条小波变换方法效果较好,而在全部保留模糊信号及只保留锐化信号中数值较大的系数时,压缩比大而重建光谱数据与原始光谱数据间的均方差较小。邵学广等[24]将小波数据压缩与窗口因子分析相结合,在很大程度上克服了用窗口因子分析直接处理原始信号时人工寻找最佳窗口的困难,在压缩比高达8:1的情况下,原始信号中的有用信息几乎没有丢失,窗口因子分析的解析时间大为缩短。Bos M等[25]用Daubechies小波对红外光谱数据进行压缩,压缩后的数据作为人工神经网络算法的输入接点,从而提高了人工神经网络的训练速度,预测的效果也比直接用光谱数据训练的要好。
2.3 小波多尺度分析
在多尺度分析方面的应用主要是对化学电信号进行小波分解,使原来单一的时域信号分解为系列不同频率尺度下的信号,然后对这些信号进行分析研究。
小波在色谱信号处理方面的应用,主要是对重叠色谱峰的解析。邵学广[26-27]等对苯、甲苯、乙苯三元体系色谱重叠峰信号小波变换后的某些频率段进行放大,然后重构色谱信号,使重叠色谱峰得到了分离,定量分析结果得到了良好的线性关系。此后邵学广[28]等利用了谱峰提取法对植物激素重叠色谱峰作了定量计算,此法表明,利用小波变换从重叠色谱信号中提取的各组分的峰高与浓度之间仍然具有良好的线性关系。
重叠伏安峰的分辨是电分析化学中一个长期存在的难题。当溶液中存在两种或更多的电活性物质,而这些物质的氧化(或还原)电位又很靠近时,就会不可避免地出现重叠峰的现象,而给进一步的定性、定量分析带来了很大困难。因此,人们做了较多的工作去解决这一难题。数学方法是目前处理重叠峰的重要手段,如Fourier变换去卷积以及曲线拟合。曲线拟合通常用来获得“定量”的信息,但这种方法有较多的人为因素,重叠峰包含的峰的个数,相对强度都是靠假设得来,因而可能引入严重的误差;去卷积方法则是一种频域分析手段,但该方法需先找出一个函数来描述伏安峰,然后再根据这个函数来确定去卷积函数,因此,去卷积函数的确定是比较麻烦的,尤其是对不可逆电极过程,无法找到一个合适的函数表达式,而且该方法还需经正、反Fourier变换,比较繁琐费时, 而小波分析的出现成了电分析化学家关注的热点。
陈洁等[29]用DOG小波函数处理差分脉冲实验数据,通过选择合适的伸缩因子,成功地延长了用DPV法测定Cu2+的线性范围。郑建斌等[30-31]将小波变换用于示波计时电位信号的处理,在有用信息提取、重叠峰分辨等方面进行了系统的研究。王洪等[32]将小波边缘检测的思想用于电位滴定终点的确定,找到了一种判断终点准确的终点判断方法。郑小萍等[33]将样条小波变换技术用于分辨重叠的伏安峰,以选定的分辨因子作用于样条小波滤波器,构造了一个小波峰分辨器,用它来直接处理重叠的伏安峰,取得了较好的分离效果,被处理重叠峰可达到完全基线分离,且峰位置和峰面积的相对误差均较小。
对于红外光谱图,目前也是通过对红外谱图进行小波分解,以提高红外谱图的分辩率。陈洁[34]等对辐射合成的丙烯酰胺、丙烯酸钠共聚物水凝胶的红外光谱信号经小波处理后,使其特征吸收带较好地得到分离,成功地提高了红外光谱图的分辨率。谢启桃[35]等对不同晶型聚丙烯红外光谱图作了小波变换,也得到了可用以区分聚丙烯a、b两晶型的红外光谱图。
3 展望
小波变换由于其优良的局部分析能力,使其在分析化学信号的滤噪、数据压缩和谱峰的分离方面得到了很好的应用。本人通过对小波变换在化学中应用的探索,认为对于分析化学中各种电信号的平滑、滤波还有待作更深入的研究,以设计出更为合理有效的小波滤波器,以消除由于平滑而导至的尖锐信号的峰高及峰面积的变化或由于去噪而带来的尖锐信号附近的不应有的小峰的出现;对于重叠峰的分离及其定量计算,还应该探讨如色谱峰基线的确定方法以及待分离频率段的倍乘系数的确定方法;另外对于色谱峰的保留指数定性问题,由于不同化合物在某一确定的分析条件下有可能会出现保留值相同的情况,这将使在未知样中加标准的峰高叠加法定性或外部标准物对照定性变得困难,我们是否可能对色谱峰进行小波分解,然后在不同的尺度上对其进行考察,以寻求色谱峰的小波定性方法,这可能是个可以进一步研究的问题。
小波变换将在分析化学领域得到更加广泛的应用,特别对于分析化学中的多元定量分析法,如多元线性回归法(MLR),主成分回归法(PCR),偏最小二乘法(PLS)等方法及人工神经网络(ANN)将会同小波变换进行有机的结合,以消除各种噪声干扰对定量分析的影响;或对相关数据进行压缩以减少待分析数据的冗余,提高分析精度和大大减少计算量提高分析速度。小波变换将会成为分析化学中定量和定性分析的一种非常重要的工具。

阅读全文

与音频去噪算法相关的资料

热点内容
银河v10驱动重编译 浏览:889
电脑上文件夹右击就会崩溃 浏览:689
右美维持算法 浏览:938
php基础编程教程pdf 浏览:219
穿越之命令与征服将军 浏览:351
android广播重复 浏览:832
像阿里云一样的服务器 浏览:318
水冷空调有压缩机吗 浏览:478
访问日本服务器可以做什么 浏览:432
bytejava详解 浏览:448
androidjava7 浏览:384
服务器在山洞里为什么还有油 浏览:885
天天基金app在哪里下载 浏览:974
服务器软路由怎么做 浏览:291
冰箱压缩机出口 浏览:227
OPT最佳页面置换算法 浏览:644
网盘忘记解压码怎么办 浏览:853
文件加密看不到里面的内容 浏览:654
程序员脑子里都想什么 浏览:434
oppp手机信任app在哪里设置 浏览:189