导航:首页 > 源码编译 > 朴素贝叶斯算法代码

朴素贝叶斯算法代码

发布时间:2023-05-18 18:22:40

1. 朴素贝叶斯分类算法预测具有属性的人是否买电脑python

它是一种基于贝叶斯定理的分类技术,具有预测者之间的独立性假设。简单地说,朴素贝叶斯分类器假定类中的特定特征的存在与任何其他特征的存在无关。例如,水果如果是红色的、圆的、直径约3英寸的,那么久可以被认为是一个苹果。即使这些特征彼此依赖或存在其他特征,朴素贝叶斯分类器将考虑所有这些属性来独立地区分这种水果是苹果的概率。

朴素贝叶斯模型易于建立,特别适用于非常大的数据集。虽然简单,但朴素贝叶斯是已知的高性能甚至高度复杂的分类方法。

Bayes定理为P(C)、P(X)和P(X,C)的后验概率p(C* x)的计算提供了一种途径。请看下面的方程式:

机器学习算法:朴素贝叶斯|python与r语言代码实现

在这里,

P(C x)是给定(属性)的类(目标)的后验概率。
P(C)是类的先验概率。
P(x,c)是预测给定类的概率。
P(x)是预测器的先验概率。
例子:让我们用一个例子来理解它。下面我有一个训练数据集的天气和相应的目标变量“玩”。现在,我们需要根据天气情况来判断玩家是否想玩。让我们按照下面的步骤来执行它。

步骤1:将数据集转换为频率表

步骤二:通过发现阴暗概率=0.29和概率为0.64的概率来创建似然表。

机器学习算法:朴素贝叶斯|python与r语言代码实现

步骤三:使用朴素贝叶斯方程计算每个类的后验概率。具有最高后验概率的类是预测的结果。

问题:如果天气晴朗,玩家会想玩,这个说法是正确的吗?

我们可以用上面讨论的方法求解它,所以P(Yes | Sunny) = P( Sunny | Yes) * P(Yes) / P (Sunny)

这里我们有P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P( Yes)= 9/14 = 0.64 得出, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60,具有较高的概率。

朴素贝叶斯使用类似的方法来预测基于不同属性的不同类别的概率。该算法主要用于文本分类,存在多类问题。

2. 朴素贝叶斯(Naive Bayes)算法

朴素贝叶斯算法属于分类算法。发源于古典数学理论,对缺失数据不太敏感,有稳定的分类效率,模型所需估计的参数很少,算法比较简单。

朴素贝叶斯算法 贝叶斯 是说明这个算法和贝叶斯定理有联系,而 朴素 是因为处理实际的需要,做了一个简化—— 假设每个特征之间是独立的 (如果研究的对象互相之间的影响很强,计算概率时考虑的问题非常复杂,做了独立假设,就可以分解后进行研究),这是这个算法模型与贝叶斯定理的区别。

将 x 作为特征,y 作为类别,那公式左边的 P(yi|x)就是说在知道特征 x 的情况下,计算这个特征属于 yi 类的可能性大小。通过比较找出这个可能性的值最大的属于哪一类,就将特征 x 归为这一类。

第3步的计算就是整个关键所在,计算依据是上面的贝叶斯公式。

对于每一个类的概率计算,公式右边的分母的 P(x)都是相同的,所以可以不计算(我们只是对最终结果进行比较,不影响)。

P(yi)也称为先验概率,是 x 属于 yi 类的一个概率,这个是通过历史信息得到的(在程序实现的时候,历史信息或者说先验信息就是我们的训练数据集),我们通过对训练样本数据进行统计,分别算出 x 属于 y1,y2,...,yn 类的概率是多少,这个是比较容易得到的。

所以,主要是求 P(x|yi)= P(a1,a2,...,am|yi)

这个时候对于贝叶斯模型的 朴素 的独立性假设就发挥作用了(综合的计算变成了独立计算后的综合,简化模型,极大地减少了计算的复杂程度):

P(a1,a2,...,am|yi) = P(a1|yi)P(a2|yi)...P(am|yi)

所以计算想要得到的东西如下:

一个程序简例

3. 朴素贝叶斯算法

贝叶斯算法是由英国数学家托马斯·贝叶斯提出的,这个算法的提出是为了解决“逆向概率”的问题。首先我们先来解释下正向概率与逆向概率的含义:

正向概率 :假设一个箱子里有5个黄色球和5个白色球,随机从箱子里拿出一个球,请问取出的是黄球的概率是多少?很容易计算P(黄球)= N(黄球)/N(黄球)+ N(白球) = 5/5+5 = 1/2。
逆向概率 :起初我们并不知道箱子里有多少个球,我们依次从箱子里取出10个球,发现这个10个球中有7个白球,3个黄球,那么我们会根据我们观察到的结果去推测箱子里白球与黄球的分布比例大概是7:3,但是我们无法推测出箱子里的球的个数。

贝叶斯算法是一种基于概率统计的机器学习算法,它会计算出每种情况发生的概率,然后对其进行分类,贝叶斯算法经常用于文本分类问题和垃圾邮件过滤问题。假设有一篇新闻报道news report,我们使用贝叶斯算法来判断它们的类别,结果如下:
p(politics|news) = 0.2
p(entertainment|news) = 0.4
p(sports|news) = 0.7
因为p(sports|news)的概率最大,所以我们判断这篇新闻报道为体育类报道。“|”左边为要判断的类别,右边是我们给定的文章。

贝叶斯公式推导
接下来,我们将通过一个例子来推导贝叶斯公式。在一所学校里,男生和女生的比例分别是60%和40%,男生全部穿长裤,女生一半穿长裤,一半穿裙子。现迎面走来一个同学,你只能看清他(她)穿的是长裤,而无法分辨出他(她)的性别,请问他(她)是女生的概率?

下面我们逐步计算这个问题:
假设学校里的学生总数为N。
男生人数:N * P(boys),女生人数:N * P(girls)。
穿长裤的男生人数:N * P(boys) * P(pants|boys),其中P(pants|boys)是条件概率的表达形式,意思是男生中穿长裤的概率。因为男生都穿长裤,所以N * P(boys) * P(pants|boys) = 60% * N。
穿长裤的女生的人数:N * P(girs) * P(pants|girls) = 0.2 * N。
穿长裤的总人数:N * P(boys) * P(pants|boys) + N * P(girs) * P(pants|girls)
穿长裤的同学是女生的概率:P(girl|pants) = N * P(girs) * P(pants|girls) / N * P(boys) * P(pants|boys) + N * P(girs) * P(pants|girls) = P(girs)*P(pants|girls) / P(pants),分母用P(pants)表示穿长裤的概率。
最终结果:P(girl | pants) = P(pants | girl) * P(girl) / P(pants)
其中:P(girl)我们称为先验概率,是已知值,在这个例子中P(girl) = 40%。先验概率:根据以往的经验和分析得到的结果,先验概率和其他条件的影响不受样本影响。
P(girl | pants)我们称为后验概率,根据观察到的结果,去反推是女生的概率。
贝叶斯数学表达式

贝叶斯算法在垃圾邮件过滤中的应用
给定一封邮件,判定它是否属于垃圾邮件?用D 来表示这封邮件,注意D 由N 个单词组成。我们用h+ 来表示垃圾邮件,h-表示正常邮件。
有贝叶斯公式可得:
P(h+ | D) = P(D | h+) * P(h+) / P(D)
P(h- | D) = P(D | h-) * P(h-) / P(D)
其中P(h+),P(h-)为先验概率,假如我们有1000封邮件,其中有50封是垃圾邮件,其他都是正常邮件,那么P(h+),P(h-)的概率就是已知的。两个式子的分母都是P(D),所以P(D)对于最终结果的比较是没有影响的。接下来就是要求P(D | h+),P(D | h-)垃圾邮件中或正常邮件中是邮件D的概率。
我们都知道一封邮件是由许多词构成的,所以我们将P(D | h+)的表达式转化为P(d1,d2,d3......dn | h+),就是看垃圾邮件中出现d1,d2...dn这些词的概率是多少。
P(d1,d2,d3......dn | h+) = P(d1 | h+) * P(d2 |d1,h+) * P(d3 |d1,d2,h+) ...
这个式子计算起来非常困难,所以在这里我们做一个假设,假设每个词都是独立的并且互不影响,那么这个式子就可以表示为:
P(d1,d2,d3......dn | h+) = P(d1 | h+) * P(d2 | h+) * P(d3 | h+) ...P(dn | h+)
P(h+ | D) = {P(d1 | h+) * P(d2 | h+) * P(d3 | h+) ...P(dn | h+)}* P(h+) / P(D)
上述这个式子我们就称为朴素贝叶斯公式,朴素贝叶斯公式是对贝叶斯公式的简化,它建立在每个条子互相独立的基础上。
在现实生活中,我们写的每一句话中词与词之间肯定是有相互联系,如果没有联系,那么这句话是读不通的。那么为什么朴素贝叶斯能够在计算中使用,首先是计算简单,其次对最终结果的影响非常小。
参考资料
1.唐宇迪,《机器学习与数据分析实战》课程。
2.Peter,《机器学习实战》。

4. 数据挖掘-朴素贝叶斯算法

朴素贝叶斯算法,主要用于对相互独立的属性的类变量的分类预测。(各个属性/特征之间完全没有关系,叫做相互独立,事实上这很难存在,但是这个方法依然比较有效。)

大学的概率论里一般都学过这个贝叶斯定理,简单阐述如下:

若事件 , ,…构成一个事件且都有正概率,则对任意一个事件Y,有如下公式成立:则有

如果X表示特征/属性,Y表示类变量,如果类变量和属性之间的关系不确定,那么X和Y可以视作随机变量,则 为Y的后验概率, 为Y的先验概率。
以图为例:

我们需要根据身高、体重、鞋码判断是男是女,则Y就是性别,X就是(身高、体重、鞋码)这一组特征。如果我们要先算是男的概率,则先验概率就是 ,而后验概率则是我们未来将要输入的一组特征已知的情况下,Y=男的概率(要预测的分类的概率),这样的话,根据贝叶斯定理,我们就可以用 来求出 ,这就是贝叶斯定理在预测中的应用。

假设Y变量取y值时概率为P(Y=y),X中的各个特征相互独立,则有公式如下:
其中每个特征集X包含d个特征。
根据公式,对比上面的图来说,如果性别是男的时候,身高是高,体重是重,鞋码为大的概率就等于

有了这个公式,结合之前的贝叶斯公式,就能得到给定一组特征值的情况下, 这组特征属于什么样的类别的概率公式:
其中的X代表一组特征, 代表一组中的一个。
对于所有的Y来说,P(X)时固定的,因此只要找出使分子 最大的类别就可以判断预测的类别了。

的概率分为两种情况来区别,一种是对分类特征的概率确定,一种是连续特征的概率确定。

接下来借用《数据挖掘导论》上的例子来说明概率确定的方式。

对于分类的特征,可以首先找到训练集中为y值的个数,然后根据不同的特征类型占这些个数中的比例作为分类特征的概率。
例如上表中求不拖欠贷款的情况下,有房的人数就是 ,不拖欠贷款的有7个,其中有房的是3个。以此类推可以求出婚姻状况的条件概率。
年收入是连续特征,需要区分对待。

根据上述算法,如果要求没有拖欠贷款情况下,年收入是120K的概率,就是

如果要预测测试记录 X =(有房=否,婚姻状况=已婚,年收入=120K)这个样本是否可能拖欠贷款,则需要计算两个概率: 和
则有:
由于 是不变的(对于Y=是和Y=否),则只考虑上面的分子即可,那么抛开P(X)不看,则有:


其中7/10就是P(Y=否),α是P(X)
同理可得P(Y=是|X) = 1 * 0 * 1.2e-1 = 0.
这样一比较,那么分类就是否。

看这个例子中,如果有一个特征的条件概率是0,那么整体的概率就是0,从而后验概率也一定是0,那么如果训练集样本太少,这种方法就不是很准确了。
如果当训练集样本个数比特征还少的时候,就无法分类某些测试集了,因此引入 m估计(m-estimate) 来估计条件概率,公式如下:

其中,n是类 中的样本总数, 是类 中取 的样本数, 是称为等价样本大小的参数, 是用户指定的参数,p可以看作在类 中观察特征值 的先验概率。等价样本大小决定先验概率 和观测概率 之间的平衡。

引入m估计的根本原因是样本数量过小。所以为了避免此问题,最好的方法是等效的扩大样本的数量,即在为观察样本添加m个等效的样本,所以要在该类别中增加的等效的类别的数量就是等效样本数m乘以先验估计p。

在之前的例子中,设m=3,p=1/3(m可以设置为特征数量,p则是倒数)。则:
从而可以重新计算 。从而解决了某个条件概率为0的问题。

面对相互独立的特征比较适用,如果有相关的特征,则会降低其性能。

5. python scikit-learn 有什么算法

1,前言

很久不发文章,主要是Copy别人的总感觉有些不爽,所以整理些干货,希望相互学习吧。不啰嗦,进入主题吧,本文主要时说的为朴素贝叶斯分类算法。与逻辑回归,决策树一样,是较为广泛使用的有监督分类算法,简单且易于理解(号称十大数据挖掘算法中最简单的算法)。但其在处理文本分类,邮件分类,拼写纠错,中文分词,统计机器翻译等自然语言处理范畴较为广泛使用,或许主要得益于基于概率理论,本文主要为小编从理论理解到实践的过程记录。

2,公式推断

一些贝叶斯定理预习知识:我们知道当事件A和事件B独立时,P(AB)=P(A)(B),但如果事件不独立,则P(AB)=P(A)P(B|A)。为两件事件同时发生时的一般公式,即无论事件A和B是否独立。当然也可以写成P(AB)=P(B)P(A|B),表示若要两件事同事发生,则需要事件B发生后,事件A也要发生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)为先验概率,P(B|A)为B的后验概率,P(A|B)为A的后验概率(在这里也为似然值),P(A)为A的先验概率(在这也为归一化常量)。

由上推导可知,其实朴素贝叶斯法就是在贝叶斯定理基础上,加上特征条件独立假设,对特定输入的X(样本,包含N个特征),求出后验概率最大值时的类标签Y(如是否为垃圾邮件),理解起来比逻辑回归要简单多,有木有,这也是本算法优点之一,当然运行起来由于得益于特征独立假设,运行速度也更快。

8. Python代码

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=",")

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print(" 调用scikit的朴素贝叶斯算法包GaussianNB ")

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包MultinomialNB ")

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包BernoulliNB ")

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的KNeighborsClassifier ")

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的LogisticRegression(penalty='l2')")

model= LogisticRegression(penalty='l2')

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的RandomForestClassifier(n_estimators=8) ")

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的tree.DecisionTreeClassifier()")

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的GradientBoostingClassifier(n_estimators=200) ")

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的SVC(kernel='rbf', probability=True) ")

model= SVC(kernel='rbf', probability=True)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

"""

# 预处理代码集锦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特征相关性分析

##计算每行每列数据的缺失值个数

defnum_missing(x):

return sum(x.isnull())

print("Missing values per column:")

print(df.apply(num_missing, axis=0)) #axis=0代表函数应用于每一列

print(" Missing values per row:")

print(df.apply(num_missing, axis=1).head()) #axis=1代表函数应用于每一行"""

6. 贝叶斯网络,看完这篇我终于理解了(附代码)!

概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。

如果用一个词来形容概率图模型(Probabilistic Graphical Model)的话,那就是“优雅”。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系, 最后基于这样的关系图获得一个概率分布 ,非常“优雅”地解决了问题。

概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中 有向边表示单向的依赖,无向边表示相互依赖关系

概率图模型分为 贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network) 两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表 示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。

长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的 概率θ始终都是1/2 ,即不随观察结果X 的变化而变化。

这种 频率派 的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。

托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版着作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。

这篇论文可以用上面的例子来说明,“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是 贝叶斯式的思考方式。

先简单总结下频率派与贝叶斯派各自不同的思考方式:

贝叶斯派既然把看做是一个随机变量,所以要计算的分布,便得事先知道的无条件分布,即在有样本之前(或观察到X之前),有着怎样的分布呢?

比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为 先验分布,或着无条件分布

其中,先验信息一般来源于经验跟历史资料。比如林丹跟某选手对决,解说一般会根据林丹历次比赛的成绩对此次比赛的胜负做个大致的判断。再比如,某工厂每天都要对产品进行质检,以评估产品的不合格率θ,经过一段时间后便会积累大量的历史资料,这些历史资料便是先验知识,有了这些先验知识,便在决定对一个产品是否需要每天质检时便有了依据,如果以往的历史资料显示,某产品的不合格率只有0.01%,便可视为信得过产品或免检产品,只每月抽检一两次,从而省去大量的人力物力。

后验分布 π(θ|X)一般也认为是在给定样本X的情况下的θ条件分布,而使π(θ|X)达到最大的值θMD称为 最大后验估计 ,类似于经典统计学中的 极大似然估计

综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

条件概率 (又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

比如上图,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率:

联合概率:

边缘概率(先验概率):P(A)或者P(B)

贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

贝叶斯网络的有向无环图中的节点表示随机变量

它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。

例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:

简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。

此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:

1. head-to-head

依上图,所以有:P(a,b,c) = P(a) P(b) P(c|a,b)成立,即在c未知的条件下,a、b被阻断(blocked),是独立的,称之为head-to-head条件独立。

2. tail-to-tail

考虑c未知,跟c已知这两种情况:

3. head-to-tail

还是分c未知跟c已知这两种情况:

wikipedia上是这样定义因子图的:将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图(Factor Graph)。

通俗来讲,所谓因子图就是对函数进行因子分解得到的 一种概率图 。一般内含两种节点:变量节点和函数节点。我们知道,一个全局函数通过因式分解能够分解为多个局部函数的乘积,这些局部函数和对应的变量关系就体现在因子图上。

举个例子,现在有一个全局函数,其因式分解方程为:

其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系。其对应的因子图为:

在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-proct算法求解。换言之,基于因子图可以用 sum-proct 算法 高效的求各个变量的边缘分布。

详细的sum-proct算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络

朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。 **

朴素贝叶斯朴素在哪里呢? —— 两个假设

贝叶斯公式如下:

下面以一个例子来解释朴素贝叶斯,给定数据如下:

现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?

这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:

我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得。

等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

但是为什么需要假设特征之间相互独立呢?

根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

朴素贝叶斯优点

朴素贝叶斯缺点

理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。

朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。

新闻分类 GitHub: 点击进入

【 机器学习通俗易懂系列文章 】

从贝叶斯方法谈到贝叶斯网络

7. 分类算法 - 朴素贝叶斯算法

相信很多同学在高中或者大学的时候都学过贝叶斯原理,即条件原理。

现分别有 A、B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球,现已知从这两个容器里任意抽出了一个红球,问这个球来自容器 A 的概率是多少?

假设已经抽出红球为事件 B,选中容器 A 为事件 A,则有:P(B) = 8/20,P(A) = 1/2,P(B|A) = 7/10,按照公式,则有:P(A|B) = (7/10)*(1/2) / (8/20) = 0.875

之所以称为朴素贝叶斯, 是因为它假设每个输入变量是独立的。 现实生活中这种情况基本不满足,但是这项技术对于绝大部分的复杂问题仍然非常有效。

朴素贝叶斯模型由两种类型的概率组成:
1、每个类别的概率P(Cj);
2、每个属性的条件概率P(Ai|Cj)。

为了训练朴素贝叶斯模型,我们需要先给出训练数据,以及这些数据对应的分类。那么上面这两个概率,也就是类别概率和条件概率。他们都可以从给出的训练数据中计算出来。一旦计算出来,概率模型就可以使用贝叶斯原理对新数据进行预测。

贝叶斯原理、贝叶斯分类和朴素贝叶斯这三者之间是有区别的
贝叶斯原理是最大的概念,它解决了概率论中“逆向概率”的问题,在这个理论基础上,人们设计出了贝叶斯分类器,朴素贝叶斯分类是贝叶斯分类器中的一种,也是最简单,最常用的分类器。朴素贝叶斯之所以朴素是因为它假设属性是相互独立的,因此对实际情况有所约束, 如果属性之间存在关联,分类准确率会降低。

(1) 算法逻辑简单,易于实现
(2)分类过程中时空开销小(假设特征相互独立,只会涉及到二维存储)

(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。
(2)在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

库有3种算法:GaussianNB、MultinomialNB和BernoulliNB。
这三个类适用的分类场景各不相同,主要根据数据类型来进行模型的选择。一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

阅读全文

与朴素贝叶斯算法代码相关的资料

热点内容
银河v10驱动重编译 浏览:889
电脑上文件夹右击就会崩溃 浏览:689
右美维持算法 浏览:938
php基础编程教程pdf 浏览:219
穿越之命令与征服将军 浏览:351
android广播重复 浏览:832
像阿里云一样的服务器 浏览:318
水冷空调有压缩机吗 浏览:478
访问日本服务器可以做什么 浏览:432
bytejava详解 浏览:448
androidjava7 浏览:384
服务器在山洞里为什么还有油 浏览:886
天天基金app在哪里下载 浏览:974
服务器软路由怎么做 浏览:292
冰箱压缩机出口 浏览:228
OPT最佳页面置换算法 浏览:644
网盘忘记解压码怎么办 浏览:853
文件加密看不到里面的内容 浏览:654
程序员脑子里都想什么 浏览:434
oppp手机信任app在哪里设置 浏览:189