导航:首页 > 源码编译 > 迪杰斯特拉c算法

迪杰斯特拉c算法

发布时间:2023-05-18 22:57:45

㈠ 迪杰斯特拉算法

按路径长度递增次序产生最短路径算法:
把V分成两组: (1)S:已求出最短路径的顶点的集合
(2)V-S=T:尚未确定最短路径的顶点集合
将T中顶点按最短路径递增的次序加入到S中,
保证:(1)从源点V0到S中各顶点的最短路径长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值 S中顶点:从V0到此顶点的最短路径长度 T中顶点:从V0到此顶点的只包括S中顶点作中间 顶点的最短路径长度 依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的 直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和 (反证法可证) 求最短路径步骤 … 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值 ƒ 若存在<V0,Vi>,为<V0,Vi>弧上的权值 ƒ 若不存在<V0,Vi>,为∝ … 从T中选取一个其距离值为最小的顶点W,加入S … 对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的 距离值比不加W的路径要短,则修改此距离值 … 重复上述步骤,直到S中包含所有顶点,即S=V为止

㈡ 迪杰斯特拉(Dijkstra)

迪杰斯特拉算法主要是用广度优先搜索的算法计算出一个顶点V到各个顶点的最短距离
ver表示没有走过的顶点,dis表示顶点V到各个顶点的距离
首先从ver集合取出取出顶点M,将顶点V的相邻顶点之间的边取出,存储在一个list1集合里面,将其排序
从list1集合取孙凳出最小值的顶点N,颂凯余并查看VM加上MN的距离是否小野滚于VN的距离,小于则更新,并且从未走的集合中删除顶点N

㈢ 迪杰斯特拉算法的算法思想

按路径长度递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
(反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

㈣ dijkstra算法复杂度是多少

1、简单复杂度是O(n2)。

Dijkstra 算法最简单的实现方法是用一个链表或者数组来存储所有顶点的集合 Q,所以搜索 Q 中最小元素的运算(Extract-Min(Q))只需要线性搜索 Q 中的所有元素。这样的话算法的运行时间是 O(n2)。
附算法:

1functionDijkstra(G,w,s)
2foreachvertexvinV[G]
3d[v]:=infinity
4previous[v]:=undefined
5d[s]:=0
6S:=emptyset
7Q:=setofallvertices
8whileQisnotanemptyset
9u:=Extract_Min(Q)
10S:=Sunion{u}
11foreachedge(u,v)outgoingfromu
12ifd[v]>d[u]+w(u,v)
13d[v]:=d[u]+w(u,v)
14previous[v]:=u

O(n)+O(1)+O(n)+O(n^2) == O(n^2).


2、用堆优化后的时间复杂度:O((m+n)log n)

㈤ 迪杰斯特拉算法难度什么水平

迪杰斯特拉算法难度是一般水平。迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法的主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。迪杰斯特拉算法的成功率是最高的,因为它每次必能搜索到最优路径。但迪杰斯特拉算法算法的搜索速度是最慢的。

㈥ djstl算法

定义Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,
CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
问题描述在无向图
G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

编辑本段迪杰斯特拉算法迪杰斯特拉(Dijkstra)算法思想
按路径长度递增次序产生最短路径算法:

把V分成两组:

(1)S:已求出最短路径的顶点的集合

(2)V-S=T:尚未确定最短路径的顶点集合

将T中顶点按最短路径递增的次序加入到S中,

保证:(1)从源点V0到S中各顶点的最短路径长度都不大于

从V0到T中任何顶点的最短路径长度

(2)每个顶点对应一个距离值

S中顶点:从V0到此顶点的最短路径长度

T中顶点:从V0到此顶点的只包括S中顶点作中间

顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的

直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和

(反证法可证)

求最短路径步骤
算法步骤如下:

1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值

若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值

若不存在<V0,Vi>,d(V0,Vi)为∝

2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3. 对S中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的

距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

编辑本段迪杰斯特拉算法的原理首先,引进一个辅助向量D,它的每个分量D表示当前所找到的从始点v到每个终点vi的最短路径的长度。如D[3]=2表示从始点v到终点3的路径相对最小长度为2。这里强调相对就是说在算法过程中D的值是在不断逼近最终结果但在过程中不一定就等于最短路径长度。它的初始状态为:若从v到vi有弧,则D为弧上的权值;否则置D为∞。显然,长度为
D[j]=Min{D | vi∈V} 的路径就是从v出发的长度最短的一条最短路径。此路径为(v,vj)。
那么,下一条长度次短的最短路径是哪一条呢?假设该次短路径的终点是vk,则可想而知,这条路径或者是(v,vk),或者是(v,vj,vk)。它的长度或者是从v到vk的弧上的权值,或者是D[j]和从vj到vk的弧上的权值之和。
一般情况下,假设S为已求得最短路径的终点的集合,则可证明:下一条最短路径(设其终点为X)或者是弧(v,x),或者是中间只经过S中的顶点而最后到达顶点X的路径。因此,下一条长度次短的最短路径的长度必是D[j]=Min{D
| vi∈V-S} 其中,D或者是弧(v,vi)上的权值,或者是D[k](vk∈S)和弧(vk,vi)上的权值之和。 迪杰斯特拉算法描述如下:
1)arcs表示弧上的权值。若不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到从v出发的最短路径的终点的集合,初始状态为空集。那么,从v出发到图上其余各顶点vi可能达到的最短路径长度的初值为D=arcs[Locate
Vex(G,v),i] vi∈V 2)选择vj,使得D[j]=Min{D | vi∈V-S} 3)修改从v出发到集合V-S上任一顶点vk可达的最短路径长度。

编辑本段迪杰斯特拉算法C#程序public class Edge

{

public string StartNodeID ;

public string EndNodeID ;

public double Weight ; //权值,代价

} 节点则抽象成Node类,一个节点上挂着以此节点作为起点的“出边”表。

public class Node

{

private string iD ;

private ArrayList edgeList ;//Edge的集合--出边表

public Node(string id )

{

this.iD = id ;

this.edgeList = new ArrayList() ;

}

property#region property

public string ID

{

get

{

return this.iD ;

}

}

public ArrayList EdgeList

{

get

{

return this.edgeList ;

}

}

#endregion

}

在计算的过程中,我们需要记录到达每一个节点权值最小的路径,这个抽象可以用PassedPath类来表示:

/// <summary>

/// PassedPath 用于缓存计算过程中的到达某个节点的权值最小的路径

/// </summary>

public class PassedPath

{

private string curNodeID ;

private bool beProcessed ; //是否已被处理

private double weight ; //累积的权值

private ArrayList passedIDList ; //路径

public PassedPath(string ID)

{

this.curNodeID = ID ;

this.weight = double.MaxValue ;

this.passedIDList = new ArrayList() ;

this.beProcessed = false ;

}

#region property

public bool BeProcessed

{

get

{

return this.beProcessed ;

}

set

{

this.beProcessed = value ;

}

}

public string CurNodeID

{

get

{

return this.curNodeID ;

}

}

public double Weight

{

get

{

return this.weight ;

}

set

{

this.weight = value ;

}

}

public ArrayList PassedIDList

{

get

{

return this.passedIDList ;

}

}

#endregion

}

另外,还需要一个表PlanCourse来记录规划的中间结果,即它管理了每一个节点的PassedPath。

/// <summary>

/// PlanCourse 缓存从源节点到其它任一节点的最小权值路径=》路径表

/// </summary>

public class PlanCourse

{

private Hashtable htPassedPath ;

#region ctor

public PlanCourse(ArrayList nodeList ,string originID)

{

this.htPassedPath = new Hashtable() ;

Node originNode = null ;

foreach(Node node in nodeList)

{

if(node.ID == originID)

{

originNode = node ;

}

else

{

PassedPath pPath = new PassedPath(node.ID) ;

this.htPassedPath.Add(node.ID ,pPath) ;

}

}

if(originNode == null)

{

throw new Exception("The origin node is not exist !")
;

}

this.InitializeWeight(originNode) ;

}

private void InitializeWeight(Node originNode)

{

if((originNode.EdgeList == null)
||(originNode.EdgeList.Count == 0))

{

return ;

}

foreach(Edge edge in originNode.EdgeList)

{

PassedPath pPath = this[edge.EndNodeID] ;

if(pPath == null)

{

continue ;

}

pPath.PassedIDList.Add(originNode.ID) ;

pPath.Weight = edge.Weight ;

}

}

#endregion

public PassedPath this[string nodeID]

{

get

{

return (PassedPath)this.htPassedPath[nodeID] ;

}

}

}

在所有的基础构建好后,路径规划算法就很容易实施了,该算法主要步骤如下:

(1)用一张表(PlanCourse)记录源点到任何其它一节点的最小权值,初始化这张表时,如果源点能直通某节点,则权值设为对应的边的权,否则设为double.MaxValue。

(2)选取没有被处理并且当前累积权值最小的节点TargetNode,用其边的可达性来更新到达其它节点的路径和权值(如果其它节点
经此节点后权值变小则更新,否则不更新),然后标记TargetNode为已处理。

(3)重复(2),直至所有的可达节点都被处理一遍。

(4)从PlanCourse表中获取目的点的PassedPath,即为结果。

下面就来看上述步骤的实现,该实现被封装在RoutePlanner类中:

/// <summary>

/// RoutePlanner 提供图算法中常用的路径规划功能。

/// 2005.09.06

/// </summary>

public class RoutePlanner

{

public RoutePlanner()

{

}

#region Paln

//获取权值最小的路径

public RoutePlanResult Paln(ArrayList nodeList ,string
originID ,string destID)

{

PlanCourse planCourse = new PlanCourse(nodeList
,originID) ;

Node curNode = this.GetMinWeightRudeNode(planCourse
,nodeList ,originID) ;

#region 计算过程

while(curNode != null)

{

PassedPath curPath = planCourse[curNode.ID] ;

foreach(Edge edge in curNode.EdgeList)

{

PassedPath targetPath = planCourse[edge.EndNodeID] ;

double tempWeight = curPath.Weight + edge.Weight ;

if(tempWeight < targetPath.Weight)

{

targetPath.Weight = tempWeight ;

targetPath.PassedIDList.Clear() ;

for(int i=0 ;i<curPath.PassedIDList.Count ;i++)

{

targetPath.PassedIDList.Add(curPath.PassedIDList.ToString())
;

}

targetPath.PassedIDList.Add(curNode.ID) ;

}

}

//标志为已处理

planCourse[curNode.ID].BeProcessed = true ;

//获取下一个未处理节点

curNode = this.GetMinWeightRudeNode(planCourse
,nodeList ,originID) ;

}

#endregion

//表示规划结束

return this.GetResult(planCourse ,destID) ;

}

#endregion

#region private method

#region GetResult

//从PlanCourse表中取出目标节点的PassedPath,这个PassedPath即是规划结果

private RoutePlanResult GetResult(PlanCourse
planCourse ,string destID)

{

PassedPath pPath = planCourse[destID] ;

if(pPath.Weight == int.MaxValue)

{

RoutePlanResult result1 = new RoutePlanResult(null
,int.MaxValue) ;

return result1 ;

}

string[] passedNodeIDs = new
string[pPath.PassedIDList.Count] ;

for(int i=0 ;i<passedNodeIDs.Length ;i++)

{

passedNodeIDs = pPath.PassedIDList.ToString() ;

}

RoutePlanResult result = new
RoutePlanResult(passedNodeIDs ,pPath.Weight) ;

return result ;

}

#endregion

#region GetMinWeightRudeNode

//从PlanCourse取出一个当前累积权值最小,并且没有被处理过的节点

private Node GetMinWeightRudeNode(PlanCourse
planCourse ,ArrayList nodeList ,string originID)

{

double weight = double.MaxValue ;

Node destNode = null ;

foreach(Node node in nodeList)

{

if(node.ID == originID)

{

continue ;

}

PassedPath pPath = planCourse[node.ID] ;

if(pPath.BeProcessed)

{

continue ;

}

if(pPath.Weight < weight)

{

weight = pPath.Weight ;

destNode = node ;

}

}

return destNode ;

}

#endregion

#endregion

}

编辑本段迪杰斯特拉算法pascal程序type bool=array[1..10]of
boolean;

arr=array[0..10]of integer;

var a:array[1..10,1..10]of integer;
//存储图的邻接数组,无边为10000

c,d,e:arr; //c为最短路径数值,d为各点前趋,

t:bool; //e:路径,t为辅助数组

i,j,n,m:integer;

inf,outf:text;

////////////////////////////////////////////////////////////////////////////////

procere init; //不同题目邻接数组建立方式不一样

begin

assign(inf,'dijkstra.in');
assign(outf,'dijkstra.out');

reset(inf); rewrite(outf);

read(inf,n);

for i:=1 to n do

for j:=1 to n do

begin

read(inf,a[i,j]);

if a[i,j]=0 then a[i,j]:=10000;

end;

end;

////////////////////////////////////////////////////////////////////////////////

procere dijkstra(qi:integer; t:bool; var c{,d}:arr);
//qi起点,{}中为求路径部

var i,j,k,min:integer; //分,不需求路径时可以不要

begin //t数组一般在调用前初始

t[qi]:=true; //化成false,也可将部分点

{for i:=1 to n do d[i]:=qi; d[qi]:=0; }
//初始化成true以回避这些点

for i:=1 to n do c[i]:=a[qi,i];

for i:=1 to n-1 do

begin

min:=10001;

for j:=1 to n do

if (c[j]<min)and(not(t[j])) then begin k:=j;
min:=c[j];end;

t[k]:=true;

for j:=1 to n do

if (c[k]+a[k,j]<c[j])and(not(t[j])) then

begin

c[j]:=c[k]+a[k,j]; {d[j]:=k;}

end;

end;

end;

////////////////////////////////////////////////////////////////////////////////

procere make(zh:integer; d:arr; var e:arr);
//生成路径,e[0]保存路径

var i,j,k:integer; //上的节点个数

begin

i:=0;

while d[zh]<>0 do

begin

inc(i);e[i]:=zh;zh:=d[zh];

end;

inc(i);e[i]:=qi; e[0]:=I;

end;

主程序调用:求最短路径长度:初始化t,然后dijkstra(qi,t,c,d)

求路径:make(m,d,e) ,m是终点

编辑本段Dijkstra算法的堆优化(PASCAL实现)一、思考
我们可以发现,在实现步骤时,效率较低(需要O(n),使总复杂度达到O(n^2)。对此可以考虑用堆这种数据结构进行优化,使此步骤复杂度降为O(log(n))(总复杂度降为O(n
log(n))。

二、实现
1. 将与源点相连的点加入堆,并调整堆。
2. 选出堆顶元素u(即代价最小的元素),从堆中删除,并对堆进行调整。
3. 处理与u相邻的,未被访问过的,满足三角不等式的顶点
1):若该点在堆里,更新距离,并调整该元素在堆中的位置。
2):若该点不在堆里,加入堆,更新堆。
4. 若取到的u为终点,结束算法;否则重复步骤2、3。
三、代码
procere Dijkstra;

var

u,v,e,i:longint;

begin

fillchar(dis,sizeof(dis),$7e); //距离

fillchar(Inh,sizeof(Inh),false); //是否在堆中

fillchar(visit,sizeof(visit),false); //是否访问过

size:=0;

e:=last[s];

while e<>0 do //步骤1

begin

u:=other[e];

if not(Inh[u]) then //不在堆里

begin

inc(size);

heap[size]:=u;

dis[u]:=cost[e];

Loc[u]:=size; //Loc数组记录元素在堆中的位置

Inh[u]:=true;

Shift_up(Loc[u]); //上浮

end

else

if cost[e]<dis[u] then //在堆里

begin

dis[u]:=cost[e];

Shift_up(Loc[u]);

Shift_down(Loc[u]);

end;

e:=pre[e];

end;

visit[s]:=true;

while true do

begin

u:=heap[1]; //步骤2

if u=t then break; //步骤4

visit[u]:=true;

heap[1]:=heap[size];

dec(size);

Shift_down(1);

e:=last[u];

while e<>0 do //步骤3

begin

v:=other[e];

if Not(visit[v]) and (dis[u]+cost[e]<dis[v]) then
//与u相邻的,未被访问过的,满足三角不等式的顶点

if Inh[v] then //在堆中

begin

dis[v]:=dis[u]+cost[e];

Shift_up(Loc[v]);

Shift_Down(Loc[v]);

end

else //不再堆中

begin

inc(size);

heap[size]:=v;

dis[v]:=dis[u]+cost[e];

Loc[v]:=size;

Inh[v]:=true;

Shift_up(Loc[v]);

end;

e:=pre[e];

end;

end;

writeln(dis[t]);

end;
http://ke..com/view/7839.htm

http://ke..com/view/1939816.htm

㈦ dijkstra算法是什么

迪杰斯特拉算法用来解决从顶点v0出发到其余顶点的最短路径,该算法按照最短路径长度递增的顺序产生所以最短路径。

对于图G=(V,E),将图中的顶点分成两组:第一组S:已求出的最短路径的终点集合(开始为{v0})。第二组V-S:尚未求出最短路径的终点集合(开始为V-{v0}的全部结点)。

堆优化

思考

该算法复杂度为n^2,我们可以发现,如果边数远小于n^2,对此可以考虑用堆这种数据结构进行优化,取出最短路径的复杂度降为O(1);每次调整的复杂度降为O(elogn);e为该点的边数,所以复杂度降为O((m+n)logn)。

实现

1、将源点加入堆,并调整堆。

2、选出堆顶元素u(即代价最小的元素),从堆中删除,并对堆进行调整。

3、处理与u相邻的,未被访问过的,满足三角不等式的顶点

1):若该点在堆里,更新距离,并调整该元素在堆中的位置。

2):若该点不在堆里,加入堆,更新堆。

4、若取到的u为终点,结束算法;否则重复步骤2、3。

㈧ 【数据结构】最短路径之迪杰斯特拉(Dijkstra)算法与弗洛伊德(Floyd)算法

迪杰斯特拉(Dijkstra)算法核心: 按照路径长度递增的次序产生最短路径。

迪杰斯特拉(Dijkstra)算法步骤:(求图中v0到v8的最短路径)并非一下子求出v0到v8的最短路径,而是 一步一步求出它们之间顶点的最短路径 ,过过程中都是 基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得出源点与终点的最短路径

弗洛伊德(Floyd)算法是一个经典的 动态规划算法

㈨ 迪杰斯特拉算法

按路径长度递增次序产生最短路径算法: 把V分成两组: (8)S:已求出最短路径的顶点的集合 (8)V-S=T:尚未确定最短路径的顶点集合 将T中顶点按最短路径递增的次序加入到S中, 保证

阅读全文

与迪杰斯特拉c算法相关的资料

热点内容
液压油可压缩吗 浏览:944
源泉cad加密文件 浏览:125
银河v10驱动重编译 浏览:889
电脑上文件夹右击就会崩溃 浏览:689
右美维持算法 浏览:938
php基础编程教程pdf 浏览:219
穿越之命令与征服将军 浏览:351
android广播重复 浏览:832
像阿里云一样的服务器 浏览:318
水冷空调有压缩机吗 浏览:478
访问日本服务器可以做什么 浏览:434
bytejava详解 浏览:450
androidjava7 浏览:386
服务器在山洞里为什么还有油 浏览:887
天天基金app在哪里下载 浏览:976
服务器软路由怎么做 浏览:293
冰箱压缩机出口 浏览:229
OPT最佳页面置换算法 浏览:646
网盘忘记解压码怎么办 浏览:853
文件加密看不到里面的内容 浏览:654