非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。
‘贰’ 非对称加密的代表例子有哪些
非对称加密主要算法:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。
使用最广泛的是RSA算法,Elgamal是另一种常用的非对称加密算法。
经典的非对称加密算法如RSA算法等安全性都相当高.
非对称加密的典型应用是数字签名。
‘叁’ 非对称加密算法有哪些
RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基网络上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。
DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。
ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。
‘肆’ 对称加密算法和非对称加密算法
常见的对称加密算法包括瑞士的国际数据加密算法(International Data Encryption
Algorithm,IDEA)和美国的数据加密标准(Date Encryption Standard,DES)。
DES是一种迭代的分组密码,明文和密文都是64位,使用一个56位的密钥以及附加的8位奇偶校验位。攻击DES的主要技术是穷举法,由于DES的密钥长度较短,为了提高安全性,就出现了使用112位密钥对数据进行三次加密的算法(3DES),即用两个56位的密钥K1和K2,发送方用K1加密,K2解密,再使用K1加密;接收方则使用K1解密,K2加密,再使用K1解密,其效果相当于将密钥长度加倍。
IDEA是在DES的基础上发展起来的,类似于3DES。IDEA的明文和密文都是64位,密钥长度为128位。
非对称加密算法也称为公钥加密算法,是指加密密钥和解密密钥完全不同,其中一个为公钥,另一个为私钥,并且不可能从任何一个推导出另一个。它的优点在于可以适应开放性的使用环境,可以实现数字签名与验证。
最常见的非对称加密算法是RSA,该算法的名字以发明者的名字命名:Ron Rivest,AdiShamir 和Leonard Adleman。RSA算法的密钥长度为512位。RSA算法的保密性取决于数学上将一个大数分解为两个素数的问题的难度,根据已有的数学方法,其计算量极大,破解很难。但是加密/解密时要进行大指数模运算,因此加密/解密速度很慢,主要用在数字签名中。
用公钥进行加密,用私钥进行解密
‘伍’ 非对称加密算法
非对称加密算法是一种密钥的保密方法。
非对称加密算法需要两个密钥:公开密钥(publickey:简称公钥)和私有密钥(privatekey:简称私钥)。公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将公钥公开,需要向甲方发送信息的其他角色(乙方)使用该密钥(甲方的公钥)对机密信息进行加密后再发送给甲方;甲方再用自己私钥对加密后的信息进行解密。甲方想要回复乙方时正好相反,使用乙方的公钥对数据进行加密,同理,乙方使用自己的私钥来进行解密。
另一方面,甲方可以使用自己的私钥对机密信息进行签名后再发送给乙方;乙方再用甲方的公钥对甲方发送回来的数据进行验签。
甲方只能用其私钥解密由其公钥加密后的任何信息。 非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。
非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。
所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。
‘陆’ 在非对称加密算法中,最有影响、最具有代表性的算法是什么
你好,目前在非对称加密算法里面,最有影响和代表的是RSA算法。他在公开密钥和电子商业中被广泛的使用。
‘柒’ 非对称加密算法 (RSA、DSA、ECC、DH)
非对称加密需要两个密钥:公钥(publickey) 和私钥 (privatekey)。公钥和私钥是一对,如果用公钥对数据加密,那么只能用对应的私钥解密。如果用私钥对数据加密,只能用对应的公钥进行解密。因为加密和解密用的是不同的密钥,所以称为非对称加密。
非对称加密算法的保密性好,它消除了最终用户交换密钥的需要。但是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。
算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。
RSA、Elgamal、背包算法、Rabin、D-H、ECC (椭圆曲线加密算法)。使用最广泛的是 RSA 算法,Elgamal 是另一种常用的非对称加密算法。
收信者是唯一能够解开加密信息的人,因此收信者手里的必须是私钥。发信者手里的是公钥,其它人知道公钥没有关系,因为其它人发来的信息对收信者没有意义。
客户端需要将认证标识传送给服务器,此认证标识 (可能是一个随机数) 其它客户端可以知道,因此需要用私钥加密,客户端保存的是私钥。服务器端保存的是公钥,其它服务器知道公钥没有关系,因为客户端不需要登录其它服务器。
数字签名是为了表明信息没有受到伪造,确实是信息拥有者发出来的,附在信息原文的后面。就像手写的签名一样,具有不可抵赖性和简洁性。
简洁性:对信息原文做哈希运算,得到消息摘要,信息越短加密的耗时越少。
不可抵赖性:信息拥有者要保证签名的唯一性,必须是唯一能够加密消息摘要的人,因此必须用私钥加密 (就像字迹他人无法学会一样),得到签名。如果用公钥,那每个人都可以伪造签名了。
问题起源:对1和3,发信者怎么知道从网上获取的公钥就是真的?没有遭受中间人攻击?
这样就需要第三方机构来保证公钥的合法性,这个第三方机构就是 CA (Certificate Authority),证书中心。
CA 用自己的私钥对信息原文所有者发布的公钥和相关信息进行加密,得出的内容就是数字证书。
信息原文的所有者以后发布信息时,除了带上自己的签名,还带上数字证书,就可以保证信息不被篡改了。信息的接收者先用 CA给的公钥解出信息所有者的公钥,这样可以保证信息所有者的公钥是真正的公钥,然后就能通过该公钥证明数字签名是否真实了。
RSA 是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。
A 要把信息发给 B 为例,确定角色:A 为加密者,B 为解密者。首先由 B 随机确定一个 KEY,称之为私钥,将这个 KEY 始终保存在机器 B 中而不发出来;然后,由这个 KEY 计算出另一个 KEY,称之为公钥。这个公钥的特性是几乎不可能通过它自身计算出生成它的私钥。接下来通过网络把这个公钥传给 A,A 收到公钥后,利用公钥对信息加密,并把密文通过网络发送到 B,最后 B 利用已知的私钥,就能对密文进行解码了。以上就是 RSA 算法的工作流程。
由于进行的都是大数计算,使得 RSA 最快的情况也比 DES 慢上好几倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。RSA 的速度是对应同样安全级别的对称密码算法的1/1000左右。
比起 DES 和其它对称算法来说,RSA 要慢得多。实际上一般使用一种对称算法来加密信息,然后用 RSA 来加密比较短的公钥,然后将用 RSA 加密的公钥和用对称算法加密的消息发送给接收方。
这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,否则的话可以越过 RSA 来直接攻击对称密码。
和其它加密过程一样,对 RSA 来说分配公钥的过程是非常重要的。分配公钥的过程必须能够抵挡中间人攻击。假设 A 交给 B 一个公钥,并使 B 相信这是A 的公钥,并且 C 可以截下 A 和 B 之间的信息传递,那么 C 可以将自己的公钥传给 B,B 以为这是 A 的公钥。C 可以将所有 B 传递给 A 的消息截下来,将这个消息用自己的密钥解密,读这个消息,然后将这个消息再用 A 的公钥加密后传给 A。理论上 A 和 B 都不会发现 C 在偷听它们的消息,今天人们一般用数字认证来防止这样的攻击。
(1) 针对 RSA 最流行的攻击一般是基于大数因数分解。1999年,RSA-155 (512 bits) 被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央内存的 Cray C916计算机上完成。
RSA-158 表示如下:
2009年12月12日,编号为 RSA-768 (768 bits, 232 digits) 数也被成功分解。这一事件威胁了现通行的1024-bit 密钥的安全性,普遍认为用户应尽快升级到2048-bit 或以上。
RSA-768表示如下:
(2) 秀尔算法
量子计算里的秀尔算法能使穷举的效率大大的提高。由于 RSA 算法是基于大数分解 (无法抵抗穷举攻击),因此在未来量子计算能对 RSA 算法构成较大的威胁。一个拥有 N 量子位的量子计算机,每次可进行2^N 次运算,理论上讲,密钥为1024位长的 RSA 算法,用一台512量子比特位的量子计算机在1秒内即可破解。
DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 签名算法的变种,被美国 NIST 作为 DSS (DigitalSignature Standard)。 DSA 是基于整数有限域离散对数难题的。
简单的说,这是一种更高级的验证方式,用作数字签名。不单单只有公钥、私钥,还有数字签名。私钥加密生成数字签名,公钥验证数据及签名,如果数据和签名不匹配则认为验证失败。数字签名的作用就是校验数据在传输过程中不被修改,数字签名,是单向加密的升级。
椭圆加密算法(ECC)是一种公钥加密算法,最初由 Koblitz 和 Miller 两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成 Abel 加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大整数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。
ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥 (比如 RSA),提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于 Weil 对或是 Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。
ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。
比特币钱包公钥的生成使用了椭圆曲线算法,通过椭圆曲线乘法可以从私钥计算得到公钥, 这是不可逆转的过程。
https://github.com/esxgx/easy-ecc
Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 算法。
https://www.jianshu.com/p/58c1750c6f22
DH,全称为"Diffie-Hellman",它是一种确保共享 KEY 安全穿越不安全网络的方法,也就是常说的密钥一致协议。由公开密钥密码体制的奠基人 Diffie 和 Hellman 所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。也就是由甲方产出一对密钥 (公钥、私钥),乙方依照甲方公钥产生乙方密钥对 (公钥、私钥)。
以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥 (SecretKey) 对数据加密。这样,在互通了本地密钥 (SecretKey) 算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯。
具体例子可以移步到这篇文章: 非对称密码之DH密钥交换算法
参考:
https://blog.csdn.net/u014294681/article/details/86705999
https://www.cnblogs.com/wangzxblog/p/13667634.html
https://www.cnblogs.com/taoxw/p/15837729.html
https://www.cnblogs.com/fangfan/p/4086662.html
https://www.cnblogs.com/utank/p/7877761.html
https://blog.csdn.net/m0_59133441/article/details/122686815
https://www.cnblogs.com/muliu/p/10875633.html
https://www.cnblogs.com/wf-zhang/p/14923279.html
https://www.jianshu.com/p/7a927db713e4
https://blog.csdn.net/ljx1400052550/article/details/79587133
https://blog.csdn.net/yuanjian0814/article/details/109815473
‘捌’ 非对称加密算法
如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。
01 对称加密算法
在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。
这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。
02 非对称加密算法
1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。
算法大致过程是这样的:
(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
(2)甲方获取乙方的公钥,然后用它对信息加密。
(3)乙方得到加密后的信息,用私钥解密。
如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。
03 RSA非对称加密算法
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。
从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。
公钥加密 -> 私钥解密
只有私钥持有方可以正确解密,保证通信安全
私钥加密 -> 公钥解密
所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名
04 质数的前置知识
RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:
1、任意两个质数构成素质关系,比如:11和17;
2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;
3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;
4、1和任意一个自然数都是互质关系,比如1和99;
5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;
6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15
05 RSA密钥生成步骤
举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?
St ep 1:随机选择两个不相等的质数p和q;
Alice选择了3和11。(实际情况中,选择的越大,就越难破解)
S tep 2 :计算p和q的乘积n;
n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。
Step 3 :计算n的欧拉函数φ(n);
因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式
φ(n) = (p-1)(q-1)
Step 4 :随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质;
爱丽丝就在1到20之间,随机选择了3
Step 5 :计算e对于φ(n)的模反元素d
所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1
Step 6 :将n和e封装成公钥,n和d封装成私钥;
在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。
密钥生成步骤中,一共出现了六个数字,分别为:
素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
BUT!
大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。
维基网络这样写道:
"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。
假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。
只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
06 RSA加密和解密过程
1、加密要用公钥(n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。
所谓"加密",就是算出下式的c:
爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:
于是,c等于26,鲍勃就把26发给了爱丽丝。
2、解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):
也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:
因此,爱丽丝知道了鲍勃加密前的原文就是5。
至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。
07 一些其它的
在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?
扩展欧几里得算法给出了解答:
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;
第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。
Reference:
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html
‘玖’ 非对称加密算法
非对称加密算法就是用两个密钥加密解密的算法。
加密的传输过程分为两部分,一部分为 身份认证 ,用户鉴别这个用户的真伪;另外一部分为 数据加密 ,用于数据的保密。这两部分功能都需要用到非对称加密技术。
首先是身份认证,通讯的数据可以这样进行处理,将用户的信息(用户名、密码等)用该用户的私钥进行加密,然后再进行传输,而在服务器端会保存此用户的公钥,用此用户的公钥对传过来的信息进行解密,就可以得到正确的明文,这样就完成了一次安全的网络通讯。
通讯过程的示例如下图所示,Alice用自己的私钥对明文进行加密后传输到服务器,服务器上的用户(例如Bob)拥有很多用户的公钥,因此使用Alice的公钥对密文进行解密,如果密钥正确的话,就可以解密出明文,也就完成了对Alice的身份认证。
然后是数据加密,数据加密和数据认证正好相反,使用接收方的公钥对数据进行加密,传输的过程中,即使数据被黑客截获,也无法使用这些密文,接收方收到密文后,用自己的私钥对密文进行解密,从而完成了一次数据的加密传输。
通讯过程的示例如下图所示,Alice需要发给Bob一段加密的信息,因此Alice就用Bob的公钥对明文进行加密后传输给Bob,Bob收到信息后,使用自己的私钥对密文进行解密,就可以解密出明文,也就完成了对Alice的发来密文的解密过程。
公钥用于加密、私钥用于解密,这才能起到加密作用
因为公钥是公开的,很多人可以持有公钥。若用私钥加密,那所有持有公钥的人都可以进行解密,这是不安全的!
若用公钥加密,那只能由私钥解密,而私钥是私有不公开的,只能由特定的私钥持有人解密,保证的数据的安全性。
但是有另一种密钥使用场景- 签名和验签 :
私钥用于签名、公钥用于验签
签名和加密作用不同,签名并不是为了保密,而是为了保证这个签名是由特定的某个人签名的,而不是被其它人伪造的签名,所以私钥的私有性就适合用在签名用途上。
私钥签名后,只能由对应的公钥解密,公钥又是公开的(很多人可持有),所以这些人拿着公钥来解密,解密成功后就能判断出是持有私钥的人做的签名,验证了身份合法性。
所以我理解,签名和验证签就是身份认证的过程。
‘拾’ 非对称加密算法的主要算法
RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。
使用最广泛的是RSA算法,Elgamal是另一种常用的非对称加密算法。
Elgamal由Taher Elgamal于1985年发明,其基础是DiffieˉHellman密钥交换算法,后者使通信双方能通过公开通信来推导出只有他们知道的秘密密钥值[DiffieˉHellman]。DiffieˉHellman是Whitfield Diffie和Martin Hellman于1976年发明的,被视为第一种 非对称加密算法,DiffieˉHellman 与RSA的不同之处在于,DiffieˉHellman不是加密算法,它只是生成可用作对称密钥的秘密数值。在DiffieˉHellman密钥交换过程中,发送方和接收方分别生成一个秘密的随机数,并根据随机数推导出公开值,然后,双方再交换公开值。DiffieˉHellman算法的基础是具备生成共享密钥的能力。只要交换了公开值,双方就能使用自己的私有数和对方的公开值来生成对称密钥,称为共享密钥,对双方来说,该对称密钥是相同的,可以用于使用对称加密算法加密数据。
与RSA相比,DiffieˉHellman的优势之一是每次交换密钥时都使用一组新值,而使用RSA算法时,如果攻击者获得了私钥,那么他不仅能解密之前截获的消息,还能解密之后的所有消息。然而,RSA可以通过认证(如使用X.509数字证书)来防止中间人攻击,但Diff ieˉHellman在应对中间人攻击时非常脆弱。