1. java实现一个小球的自由落体运动
你说的是模拟直线运动还是轨迹是凯姿察抛物线的那种?
如何去模拟说白了就是要根据册链某种算法计算出物体运动的下一个坐标,做自由落体运动满足能量守盯茄恒定理,要把它实现出来关键是确定一个能量衰减(转化为其他能量)系数,就是物体以多少速度撞击然后以多少速度反弹,以多少角度撞击和以多少角度反弹,这个类似于镜面反射。
确定了以上这些,实现起来就不难了。
2. 自由落体加速度的算法
自由落体a=g=9.8m/^s
3. 8000米自由落体时间算法
路程等于加速度乘以时间的平方。
初速度为零!加速度取10,8000=10t的平方,好圆纤t方=800,t=√800=20√2。
物体开始下落时是静止的,即初速度为0,如果给物体一个初速度竖直下落,不能算自由落体,只能算是加速度不变的匀加速运动;物体在下落过程中,除受重力友仿作用外,不再受其他任何作用力(如空气阻力)。匀加速直线运动,其加速度恒等于重力加速腔和度g(g=9.8m/(s^2))。
4. 自由落体的问题
你去看一下和粘性流体力学相关的书,就知道不加任何条件这样问是没有意义的。
对于圆球有斯托克斯公式和奥森公式,是常用的一个近似结论,(只在速度较低时可用)。
阻力=(1/2)*空气密度*速度的平方*圆球迎风面积*(24/雷诺数)*(1+3*雷诺数/16)
其中:雷诺数=空气密度*速度*圆球直径/空气黏度系数
在温度为10度时。
空气密度=1.247 kg/m^3
空气黏度系数=1.77/100000 Pa*s
如果人直立跳下应该用平板附面层的阻力公式。
如果是平躺做虚着落下似乎该用动量定理求阻力。
这样的问题,完全应该忽略阻力。直接用自由落体公式。
下落高度=9.8*(时间^2)/2计算通过每层时的时刻,递减
传说这是伟大的科学家伽利略的一个试验。一大一小的两个铁球会同时落地吗?
实验原理
1604年,伽利略用实验证明:物体下落的高度与时间的平方成正比,而与重量无关,即落体运动是匀加速的;通常看到不同物体下落之所以有快慢,并不是由于重量不同,而是由于空气阻力的缘故。
是说阻力吧?
你去看一下和粘性流体力学相关的书,就知道不加任何条件这样问是没有意义的。
对于圆球有斯托克斯公式和奥森公式,是常用的一个近似结论,(只在速度较低时可用)。
阻力=(1/2)*空气密度*速度的平方*圆球迎风面积*(24/雷诺数)*(1+3*雷诺数/16)
其中:雷诺数=空气密度*速度*圆球直径/空气黏度系数
在温度为10度时。
空气密度=1.247 kg/m^3
空气黏度系数=1.77/100000 Pa*s
如果人直立跳下应该用平板附面层的饥胡乱阻力公式。
如果是平躺着落下似烂档乎该用动量定理求阻力。
这样的问题,完全应该忽略阻力。直接用自由落体公式。
下落高度=9.8*(时间^2)/2计算通过每层时的时刻,递减。
5. 自由落体--一实心铁球和一空心铁球下落
实心球先落地的情况你可以想象一下,一个很大的实心纸球(注意,是纸球哦,球的任何部分都是实实在在的纸,不是我们团的纸团,呵呵)和一个同体积的空心纸球哪个会先落地?很明显,实心的纸球会先落地吧?因为空气阻力相对于实心球的重力来说差别太大,作用很小,根本起不了主要作用,而对空心球就起了很大的作用,因为它的重力跟空气阻力大小是相近的,那么同样,铁球也是一样的道理。反过来我们再考虑,搂主分析,其实是不对,我们如果没有空气阻力的话,两个球会同时落地,那照楼主用的公式来看,是说明一个球加速度大,一个球加速度小,这怎么可能呢?其实这道题本早枝身是不严谨的,因为没有说清楚空心球的空心部分到底是什么,空心球到底有多空,如果是一个很薄的空心球,里面是真空的话,那它的浮力还有可能大于他的重力,不过出题者应该把这种情况忽略掉了,并且结陆碰论与问题的答案是一致的,所以我们不予讨论。至于两个球落地的早睁谈算法,由于时间的关系,我就不做说明了,我只提醒你,你那种算法忽略了加速度的大小,自己看看公式,加速度等于什么?还有一点就是楼主认为两个球受到的空气阻力大小一样也是不对的。