导航:首页 > 源码编译 > 运输车辆路线使用图论算法吗

运输车辆路线使用图论算法吗

发布时间:2023-05-20 10:56:54

‘壹’ 大哥大姐们什么是图论

图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。
图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当
然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。
图与网络是运筹学(Operations Research)中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。

个人觉得在实际应用中就是找出对应问题,找出算法,之后再搞定程序。
现在经常用的算法就十来个,都有对应的算法的。

1 最短路问题(SPP-shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。
2 公路连接问题
某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?
3 指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?
4 中国邮递员问题(CPP-chinese postman problem)
一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。
5 旅行商问题(TSP-traveling salesman problem)
一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。
6 运输问题(transportation problem)
某种原材料有 个产地,现在需要将原材料从产地运往 个使用这些原材料的工厂。假定 个产地的产量和 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?
7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法
8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由Floyd R W提出的算法,称之为Floyd算法。(可以解决第一个问题)
9.prim算法、Kruskal算法构造最小生成树(使所有点连通)
10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题
11.Euler回路的Fleury算法(中国邮递员问题)
12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)

我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……
算法很多网络能到……

‘贰’ 急!急!急!数学建模的两个题,有重分奖励!!!!

通过将车流量的增大或减小转化为路长权重的变化。将交通流量的动态问题转化为静态问题,用解决最短路问题的Dijkstra 方法,给出交通流量实时最优控制的可行性模型及其有效算法。

关键词:交通流, 实时最优控制, 道路加权, Dijkstra 方法

随着国民经济的持续、高速发展,各种机动车尤其是私家车拥有量急剧增加带来了交通运输业的空前繁荣。但是,大多数城市的交通已从过去的局部拥挤演变成为当今的大范围全面紧张,如我国的一个大城市,当处于早晚交通高峰时,交叉路口处的阻车长度长达1000多米,有的阻车车队从一个交叉路口延伸到另一个交叉路口,这时一辆车为通过一个交叉路口,往往需要半个小时以上,还不如步行快,这给城市交通带来了难以承受的负荷。拥挤不仅带来时间的浪费,还导致公交系统运行的无规则性,如公交汽车不能按时到站等,使人们对自己的旅行时间无法估计,耽误工作和计划等。这种紧张状况日趋严重,已成为大城市突出的社会问题之一,也成为国民经济进一步发展的“瓶颈”问题。因此,必须面对现实,解决城市的交通拥挤,堵塞问题。
那么城市交通拥挤、堵塞原因何在呢?分析如下:
(一)、现行交通信号控制方法中交通信号与交通流量不适应。目前,各城市交叉路口使用最为广泛的是单点定周期控制方式。这种控制方式存在的问题有以下几个方面:
1. 对交通流的随机变化无适应能力。由于是定周期方法,因此一旦周期时间和绿信比选定之后,一般就不再经常改动。而交通网络中车流、人流的变化是随机的、经常的,各个周期中交叉路口同一方向上通过的流量可能差异很大。不同的流量对绿灯时间有着不同的要求。所以此种控制方式给出的信号常常不能与客观实际车流的随机变化相适应。我们常常遇到这样的情况:有车辆等待通过的方向信号是红灯,而与此同时无车辆方向的信号却是绿灯,白白浪费了现有路口通行能力。为了克服这一缺点,人们考虑运用概率、统计的方法,在收集了大量交通数据的基础上,对周期时间和绿信比进行离线优化选择,使选出的周期时间和绿信比在概率意义下的合理性有很大提高。但是,这又带来了下面的问题。
2. 需要经常调节控制规律。首先是因为城市土地结构变化很备笑快而带来的车流量变化很快。以往的数据很快便失去了实用价值。因此优化方案不在最优甚至不合理,需要重新仿中含进行数据收集,最优方案选择等工作。这一点对发展中城市更为明显。其次是同一路口 、同一方面在每星期中各天的流量是不同的,每天中高峰、平峰、低峰时交通也是不一样的,这些都要求按预先算好的时刻表、日期表调换周期时间和绿信比,局限性很大。并且交通流量的随机性越大,其缺点与明显。
3. 没有考虑各交叉路口的联系。“单点”即指各路口各自进行控制,不管邻近路口的信号灯翻转规律如何。这种各个路口互不配合、互不协调的控制方式人为地给交通流的流动设置了许多阻力。
(二)、信息流通条件极差,无法对乘客和车辆进行诱导和管理。这个问题在交通网络运行畅通的情况下并不明显,但当交通堵塞、交通事故等紧急事件发生时就显得非常突出。然而这些紧急事件却常有发生。每当这时,公共汽车调度站无法知道路上的情况,从而无法对公共汽车的线路、发车频次作恰当调整;其他车辆的司机也得不到信息无法选择较为畅通的线路;在公共汽车站等车的乘客也无法做出决策,是继续等车或是换乘其他车次或是步行等。实际上在许多情况下,只要进行恰当的诱导,道路的拥挤状况就会大大缓解或保证畅通。例如:1984年洛杉矶奥运会期间,由于采用了大量的动态路标显示板,诱导车辆选择恰当的路线,因而,尽管车辆较平时增多培配很多,但网络中交通流的运行状况却比平时还好。
(三)、停车场的能力不够,位置也不当。这是多年延续下来的旧病,只修路不修停车场。比如,成都火车站东西二环路,那里的批发市场很多,但是,无合理的停车场,大多数司机将车直接停放在街道上,这样严重影响了道路的通行能力。应该将停车场向专门化,地下化发展,在宾馆,商场,机关大楼,居民大楼的地下设置社会化的停车场是解决城市交通拥挤,堵塞的一条行之有效的办法。
交通运输是一个复杂的大系统,这个系统必须在严格科学的制度下运行,它不是一个自适应系统,任何违反规章制度的行为都可能导致大系统的局部、甚至“整体”的瘫痪。
交通拥挤和堵塞对策从总体上可分为三大类:
(1) 加强道路建设,以提高交通网络的交通容量;
(2) 加强交通运用与管理以充分发挥现有道路设施的作用,使得交通网络的使用效率最大;
(3) 全面实施交通需求管理以使交通需求在时间、空间上均匀化,交通结构合理化。由于交通基础设施建设工期长,耗资大,在当前资金有限的条件下,解决特定的城市交通问题时,必须事先进行对策的效果分析。
如前所述,要想比较有效的解决城市的交通拥挤,堵塞问题不能单纯的只依靠增加道路面积和长度,而要不断的完善路网系统,调整路网结构和加强交通管理的现代化,以及对单个车辆的控制及引导。首先就交通流量的静态情形是一种理想状态,既假设在一个城市街区内车流速度一定,对单个车辆的控制及引导进行研究分析,给出调控标准。
交通道路网的拓扑性质可以用图论的基本原理来分析。图由“弧”和“顶点”两部分组成,交通道路网的拓扑模型可以抽象认为是由节点(交叉路口)以及弧(道路)组成的有向图。边的方向就是车流的方向。由于道路和交叉路口都有很多属性,这样就可以把始发地和目的地之间的区域交通网抽象成了多属性赋权有向图。
假设:
1. 所有道路一样宽;
2. 每一条道路都不需停车等待;
3. 车流速度恒定;
4. 道路长已知。
5. 从 点到 点所用时间仅与路长有关。
不考虑意外事故对交通的影响。车子所在地设为 点,目的地设为 点。于是车子所要走的路线就可以用P来表述。

: , 两点间距离
v:车流速度
t:从始发地 到目的地 的时间
:P中所有弧长之和
表示道路状况的权重
表示车流速度改变而赋给道路的权重
表示
模型建立
由于假设车速恒定,由 可知,要求从始发地 到目的地 用时最短就可以转化为求道路最短。此时问题可以用以下数学模型描述:
( * )
我们将城市道路网描述为一赋权有向图D=(V,U)对每一条有向边 ∈U都存在一l 与这对应,其表示道路两结点间的距离,称之为有向边 的权。


模型的求解
在赋权有向图中,我们选定某个起点 ,终点 .采用迪克特拉(E.W.Dijkstra)算法。Dijkstra方法的基本思想是从 出发,逐步地向外探寻最短路。执行过程中,与每一个点对应,记录下一个数(称为这个点的标号),它或者表示从 到该点的最短路的权(称为P标号)、或者是从 到该点的最短路的权的上界(称为T标号),方法的每一步是去修改T标号,并且把某一个具T标号的点改变为具P标号的点,从而使D中具P标号的顶点数多一个,这样,至多经过p-1步,就可以求出从 到各点的最短路。
对静态的交通加权最短路问题进行了数学建模,但是实际状态中,还有许多因素影响交通运行时间,譬如道路宽度不尽相同,会使车辆流率不同(车流量的大小用车流率表示,车流率是道路上某点单位时间内到达或离开的车辆数,简称流率);时段高峰期,会造成某一路段在某一时段交通拥挤甚至阻塞,从而使得车流速度降低等,也就是只从静态考虑了实际问题。这一些个因素没有考虑进去,按照理想模型来分析,会导致估计结果粗糙从而失真,不能有效地对单个车辆进行引导控制。于是我们在前面假设的基础上再进行模型的修改:当流量处于动态变化时,把道路宽度,交通阻塞等因素考虑进去。这样一来定点路段上的车行最短时间的问题上比静态情形复杂很多,我们采用因素转化法,将多因素变量转化为单因素变量来建立优化模型。
首先我们可以利用自动的交通检测装置来测量交通网络中各个不同部分的交通流状态,再通过一些电讯设备将这些检测到的信息送到控制中心或电台等,这样就可以知道某一时刻的各个路段的交通状况,从而为我们对司机的行车进行引导提供了信息。
由于加入了影响因素,车流速度随着高峰期拥堵而在一个时间段有所改变。由 知,求用时最短的方案必然有所改变。但是我们可以将车速改变转化为路长改变,即对道路加权改为随时间变化的函数,如速度增大则道路权为正小数,速度减小则把权设为正整数,使得要求用时最短仍能转变成求道路最短。
刚才考虑了车流速度改变的情况,现在来看看交通状况改变,譬如发生交通意外而使道路瘫痪不能行车,或是时段高峰期使得交通拥挤等。这时我们仍可以在一个时间段对道路加权来使问题转变成静态模型,即求道路最短模型。道路的权重可以通过经验给出。当道路不能畅通无阻时,我们设其权重为大于1的正整数,反之设为1。
仍同初始交通加权最短路问题一样,可将始发地和目的地之间的区域交通网抽象成多属性赋权有向图。
由自动的交通检测装置反馈来的数据信息,我们可以给一条道路赋予一定的权重,根据情况程度决定具体权重。
当道路因各种原因使得车流速度受到影响时,我们可以把权重 取值范围设定为〔1,∞),其中 =∞ 表示道路严重阻塞,车辆不能通行; =1 表示车流速度不受影响,可以自由行驶。车流速度改变后,我们可以把权重 的取值范围设定为(0,∞),当 时,表示车流速度增大; 时,表示车流速度减小; =1时,则表示与初始速度相比没有改变。
由以上所述,我们可以把模型建立为
( ** )
虽然每一时刻道路状况,车流速度不尽相同,但是经过转换,形成以上模型,就只是参数变化而已,如此一来仍然可以用初始最短路问题的模型求解,这样就大大简化了问题。
在下述Dijkstra方法具体求解步骤中,用P,T分别表示某个点的P标号、T标号, 表示第i步时,具P标号点的集合。为了在求出从 到各点的距离的同时,也求出从 到各点的最短路,给每个点 以一个 值,算法终止时,如果 ,表示在从 到 的最短路上, 的前一个点是 ;如果 ,则表示D中不含从 到 的路; 表示 = 。其中M表示无穷大的数。
模型检验与实用性研究
前面给出了一般性的优化模型,现在我们举个例子对模型进行计算。
如图所示,这是一个单行线交通网,车辆以速度v行驶,每弧旁的数字表示两点间相对距离。现在某出租车要从 出发,通过这个交通网到 去,求所用时间最短的路线。
图5-1

由 可知,若速度等因素没有改变时,根据模型( * ),用Dijkstra算法直接求解,得从 到 的最短路是 。
假设,此时速度或道路状况改变,则根据模型( ** )我们可以得:
不妨设此时车已开向 ,并且车速变为2v( =0.5), 到 的路上由于上班高峰期造成了阻塞( =5), 到 的道路由于不是主干道车流较之前减少畅通率提高 ( =0.6),其他道路状况没有改变( =1)。此时根据模型( ** ):
可求得从 到 用时间最短路线为
实用性研究
优化后的模型,对于实际交通流量控制有着较好的导控作用。在运用此模型时,可通过三个设备获取数据,实现可行性。第一个是车辆设备,二是路边设备,三是控制中心。
车辆设备包括:
⑴ 接收由驾驶员输入数据的操作键盘;
⑵ 从路旁通讯设备接收数据和向该设备发送数据的收发部件;
⑶ 能提供从路旁通讯设备接收到的数据的现实控制板;
⑷ 接收来自路边或中心广播设备传送来的信息的接口。
路边设备包括:
⑴ 记录从中心处理设备传来的数据的路边通讯设备,以及通过嵌入路面的环形线圈和车辆天线与单个车辆进行双向通讯。
⑵ 直接用电缆线来连接中心控制与路边广播设备,再进行车辆通讯。⑶ 自动的交通检测装置,可测量车辆速度以及检测道路状况。
这样,司机把一个他所希望的终点站代码输入到安装在车内的键盘,一旦车辆接近确定的地点时,车上的微型计算机通过车辆天线和一个嵌入路面的回路线圈向路边微机设备传送存贮的代码数据,此微机再将代码数据反馈回控制中心,控制中心利用本文优化模型及给出的算法进行求解,得出合理的行驶路线,经由路边设备反馈给车上的微型计算机,司机通过显示器可以获取最短路线。
由于交通不是单个车辆的,而是众多车辆参与在内的运行,因此交通状况时刻可能改变,这将影响单个车辆行驶路线的改变。本文的导控考虑到此种情况,将导控分时间段进行:
表5-1
低谷期
5:00-
7:30 高峰期
7:30-
9:00 中间期
9:00-
12:00 高峰期
12:00-
13:00 中间期
13:00-
17:30- 高峰期
17:30-
19:00 低谷期
19:00-
23:00
在低谷期内的反馈周期为30分钟,中间期为15分钟,而高峰期则为5分钟一次,因为高峰期道路状况改变快,因此反馈给司机的数据间隔也不能太长。这样就使得本文的模型更具可行性。

‘叁’ 2011数学建模国赛B题 求解答

一 问题的重述
110警车在街道上巡逻,既能够对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时也加快了接处警时间,提高了反应时效,为社会和谐提供了有力的保障。
现给出某城市内一区域,其道路数据和地图数据已知,该区域内三个重点部位的坐标分别为:(5112,4806),(9126, 4266),(7434 ,1332)。该区域内共有307个道路交叉口,为简化问题,相邻两个交叉路口之间的道路近似认为是直线,且所有事发现场均在下图的道路上。
该市拟增加一批配备有GPS卫星定位系统及先进通讯设备的110警车。设110警车的平均巡逻速度为20km/h,接警后的平均行驶速度为40km/h。警车配置及巡逻方案要尽量满足以下要求:
D1. 警车在接警后三分钟内赶到现场的比例不低于90%;而赶到重点部位的时间必须在两分钟之内。
D2. 使巡逻效果更显着;
D3. 警车巡逻规律应有一定的隐蔽性。
现在我们需要解决以下几个问题:
一. 若要求满足D1,该区最少需要配置多少辆警车巡逻?
二. 请给出评价巡逻效果显着程度的有关指标。
三.请给出满足D1且尽量满足D2条件的警车巡逻方案及其评价指标值。
四. 在第三问的基础上,再考虑D3条件,给出你们的警车巡逻方案及其评价指标值。
五.如果该区域仅配置10辆警车,应如何制定巡逻方案,使D1、D2尽量得到满足?
六. 若警车接警后的平均行驶速度提高到50km/h,回答问题三。
七. 你们认为还有哪些因素、哪些情况需要考虑?给出你们相应的解决方案。

二 问题分析
本题为城区道路网络中警车配置及巡逻问题。在进行警车配置时,首先要考虑警车在接警后在规定时间内赶到现场的比例,在此条件下,以车数最少为目标,建模、求解;在制定巡逻方案时,要考虑巡逻的效果及隐蔽性问题。
问题一只要求满足D1,求最少的警车配置数,可以认为警车是不动的,在三分钟或两分钟内它能到达的区域就是它的覆盖范围。据此,在满足所有街道的覆盖率不低于90%的条件下,寻找最优解。
问题二要评价巡逻效果,有两个方面需要考虑:一是巡逻的全面性,即经过一段时间后警车走过的街道数占总街道数的比例;二是巡逻的不均匀性,即经过一段时间后警车经过每一条街道的次数相差不大,用方差来衡量。
问题三是在满足D1的条件上尽量满足问题二所给的指标,并给出评价方案的指标。首先找到一组满足D1的各警车位置,然后在和各警车位置相连的点中随机寻找一个点,判断新的点是否满足D1,如果满足则警车行驶到该点,否则重新寻找,直到满足为止。一段时间后统计所有车走过的点数及每个点被走过的次数,用问题二给出的两个指标进行评价。综合两个指标,可判断此路径的好坏,重复这个过程,直到综合评价指标达到一个满意的值为止。
问题四增加了隐蔽性要求,首先给出评价隐蔽性的指标,隐蔽性可用路线的随机性来评价,将它加入到问题三的模型中去进行求解。
问题五限制警车数量为10,要综合考虑D1、D2,先分配这10辆车使道路的覆盖率最高,然后按照问题三的步骤进行求解,其中每一步对D1的判断只需使道路的覆盖率尽量高即可。
问题六同问题三,只需将车速改为50km/h即可。

三 模型的假设

1. 警车都在路上巡逻,巡警去处理案件的时间不考虑;
2. 所有事发现场都在道路上,案件在道路上任一点是等概率发生的;
3. 警车初始停靠点是随机的,但尽量让它们分散分布,一辆警车管辖一个分区;
4. 假定各个划分区域内,较短时间内,最多会发生一个案件;
5. 假设区域内的每条道路都是双行线,不考虑转弯对结果造成的影响;
6. 如果重点部位不在道路上的,假设这些重点部位在离它们最近的道路上;
7. 图中水域对巡逻方案没有影响。

四 符号说明

表示警车数目
表示警车初始停靠点到各道路的最短距离
表示整个区域的总道路长度
表示不能在3分钟内到达的区域的道路的长度
表示非重点部位的警车在3分钟内不能到达现场的比例
表示三分钟内能从接警位置赶到事发现场的最大距离是
表示整个区域总的离散点个数
表示第 区内的节点个数
表示区内调整函数
表示模拟退火的时间,表征温度值
表示区间调整函数
表示全面性指标
表示不均匀性指标
表示综合评价指标
表示第 辆车经过每条道路的次数
表示整个区域每条道路经过的平均次数

五 模型的建立与算法的设计
5.1 满足D1时,该区所需要配置的最少警车数目和巡逻方案
5.1.1 满足D1条件时,区域最少警车的规律
题目要求警车的配置和巡逻方案满足D1要求时,整个区域所需要配置的警车数目最少。由假设可知警车都在道路上,且所有事发现场也都在道路上,但区域内总的道路长度是个定值的;警车在接警后赶到事发现场有时间限制和概率限制:三分钟内赶到普通区域案发现场的比例不低于90%,而赶到重点部位的时间必须控制在两分钟之内。由此可知每辆警车的管辖范围不会很大,于是考虑将整个区域分成若干个分区,每辆警车管辖一个分区域。
由上面的分析,求解整个区域的警车数目最少这个问题可转化为求解每一辆警车所能管辖的街道范围尽量的大。于是我们寻找出使每辆警车管辖的范围尽量大的规律。为了简化问题,我们不考虑赶到现场的90%的几率的限制,仅对警车能在三分钟内赶到事发现场的情况作定性分析,其分析示意图如图1所示。警车的初始停靠位置是随机的分布在道路上的任一节点上,我们假设一辆警车停靠在A点上。

图1 一辆警车管辖范围分析示意图

由于警车的平均巡逻速度为20km/h,接警后的平均行驶速度为40km/h,由于距离信息比较容易得到,于是我们将时间限制转化为距离限制,这样便于分析和求解。当警车接警后,在三分钟内能从接警位置赶到事发现场的最大距离是 ,其中 。
如图1所示,我们设警车初始停靠位置在A点,A点是道路1,2,3,4的道路交叉口。我们仅以警车在道路1巡逻为例来进行分析,警车以 的速度在道路1上A到 点之间巡逻, 与初始停靠点A的距离为 。由于案件有可能在道路上任一点发生,当警车巡逻到A点时,若案发现场在道路2,3,4上发生时,警车以40km/h的速度向事发现场行驶,警车能在三分钟内从 点赶到现场的最大距离为 。如果警车在道路1上继续向前行驶,则该警车能在三分钟内赶到现场的距离继续缩小,当警车从初始点向A点行驶但没有达到 点时,此时该警车的最大管辖范围比警车到达 点时的最大管辖范围大。为了使警车的管辖范围尽量大,警车的巡逻范围越小越好,当 时,即警车在初始停靠点静止不动时,警车的管辖范围达到最大值 。
图1所分析的是特殊的情况,道路1,2,3,4对称分布,现在我们来对一般的情况进行分析,如图2所示。

图2.1 图2.2
图2 一辆警车最大管辖范围分析示意图

图2.1所示的情况是道路分布不对称,与图1相比,图2.1所示的道路方向和角度都发生了改变,图2.3中的情形更为复杂。参照对图1的分析方法,我们分析这两种情形下,警车巡逻时能在三分钟内赶到现场的最大距离的规律,我们只分析图2.2的情况,道路1,2,3,4,5相交于点C,同时道路1与道路6也有个道路交叉口D, 由于警车巡逻时是在道路上行驶的,行走的路线是分段直线,并不影响路径的长度,所以当警车巡逻到距离初始停靠点C点 远处的D,此时若有案件发生时,该警车要在三分钟内能赶到现场处理案件,最大行驶距离在 之内,如果警车在道路1上继续向前行驶,则该警车能在三分钟内赶到现场的距离继续缩小,当警车没有行驶到D点时,此时该警车的最大管辖范围比 大,为了使警车的管辖范围尽量大,警车的巡逻范围越小越好。当 时,即警车静止不动时,一辆警车的管辖范围能达到最大值。
以上分析的仅作定性的分析,对于三个重点部位也可以同理分析,所得的结论是一致的,以上的分析没有考虑到90%的到达几率限制,但在设计算法需要充分考虑。
综上所述,当警车静止在初始停靠点时,在三分钟时间限制内,警车能从初始停靠点赶到事发现场的最大距离为 。

5.1.2 将道路离散化
由于事发现场是等概率地分布在道路上的,由区域地图可以发现,整个区域中的道路长度不均,为了使计算结果更加精确,可将这些道路离散化。只要选取合适的离散方案,就能使警车在经过道路上的离散的点时就相当于经过了这条道路。这样,不论是求解警车初始停靠点还求解警车赶到事发现场所经过的道路时,所计算得的的结果显然比仅考虑整条道路的叉路口要精确得多。
区域中共有307个道路交叉口,458条道路。我们采用线性插值方法对道路进行离散化,以 的速度行走一分钟的距离作为步长,一分钟时间的选择是参照问题三的结果要求来设定的,步长 。用线性插值的方法,从道路的一个方向进行线性插值,实现将每条道路离散化的目标,考虑到有些道路不是 的整数倍,我们就一般情况进行讨论,其分析示意图如图3所示。道路AB长度为 个 与 长度的和,为了更精确处理CB段道路,那么就要考虑在CB之间是否要插入一个新的点, 根据 的长度不同,其对应的处理方式也有所不同。

图3 道路离散化分析示意图

引进临界指数 ,选取 大小的准则是使尽量离散化后警车等效的平均巡逻速度和题目给定的速度( )的差值尽量小,经过计算得 时,不再插入新的坐标点时能使整个区域的道路离散效果较好。此时,将CB段长度设定为 处理,于是离散后的AB道路长度会比实际长度短些;当 时,需要在两个点之间再插入一点,因为这样处理能使整个区域的整体道路的离散化效果比较理想。如图3所示,在C与B间再插入新的坐标点,插入的位置在距C点 的D点处,这样处理后所得的道路长度比实际长度长了 。采用这样的方法进行线性插值,我们使用MATLAB编程实现对整个区域道路的离散,所得的离散结果如图4所示,离散后共得到762个节点,比原始数据多了455个节点,离散后的节点数据见附件中的“newpoint.txt”。

图4 整个区域离散结果图

采用这种插值方法道路离散后,将直线上的无穷多个点转化有限个点,便于分析问题和实现相应的算法,由图4可知,所取得的整体离散效果还是比较理想的。

5.1.3 分区域求解警车数目的算法设计
考虑到警车配置和巡逻方案需要满足:警车在接警后三分钟内赶到普通部位案发现场的比例不低于90%,赶到重点部位必须控制在两分钟之内的要求。设计算法的目标就是求解出在满足D1情况下,总的警车数目最小,即每个区域都尽可能多地覆盖道路节点。由于警车的初始位置是未知的,我们可设警车初始停靠点在道路上的任一点,即分布在图4所示的762个离散点中的某些点节点上,总体思路是让每两辆车之间尽量分散地分布,一辆警车管辖一个分区,用这些分区覆盖整个区域。
于是我们设计算法1,步骤如下所示:

Step1:将整个区域预分配为 个分区,每个分区分配一辆警车,警车的初始停靠位置设在预分配区中心的道路节点上,若区域的中心不在道路节点上,则将警车放在离中心最近的道路节点上;
Step2:统计分区不能覆盖的节点,调整警车的初始停靠点,使分区覆盖尽可能多的道路节点,调整分为区内调整和区间调整方案:(1)区内调整按照模拟退火思想构造的函数,在区间调整调整车辆初始点的位置(后文中有详细说明),当分区内节点数较多时,调整的概率小些,分区内节点数较少时,调整的概率大些,(2)当区域中存在未被覆盖的节点或节点群(大于等于三个节点集中在一个范围内)时,将警车初始位置的调整方向为朝着这些未被覆盖的节点按一定的规则(在算法说明中有详细叙述)移动,同时要保证 3个重点部位能在2分钟之内100%到达;
Step3:用Floyd算法计算出警车初始停靠点到周边各道路节点的最短距离 ;
Step4:以 个划分区域未覆盖的总的道路长度 与整个区域的道路总长度 的比值 来表示警车不能3分钟内到达现场的概率;
Step5:模拟足够多的次数,若 ,将车辆数 减1,跳转到Step1;
Step6:计算结束后,比较当 时所对应的 值, 当 取得最小值时,记录此时的区域划分方案, 即为最少的警车数。

对算法的几点说明:
(1)该算法所取的车辆数 是由多到少进行计算的, 初始值设为20,这个值的选取是根据区域图估算的。
(2)预分区的优点在于使警车的初始位置尽可能均匀地分散分布,警车的初始停靠点在一个分区的中心点附近寻找得到,比起在整个区域随机生成停靠点,计算效率明显得到提高。
预分配之后,需要对整个区域不断地进行调整,调整时需要考虑调整方向和 调整概率。
警车调整借鉴的是模拟退火算法的方法,为了使分区内包含道路节点数较多的分区的初始停车点调整的概率小些,而分区内包含道路节点数的少的分区内的初始停车点调整的概率大些,我们构造了一个调整概率函数 ,
(1)
(1)式中, 均为常数, 为整个区域车辆数, 为第 分区内覆盖的节点数, 为时间,同时 也能表征模拟退火的温度变化情况:初始温度较高,区域调整速度较快,随着时间的增加,温度不断下降,区域调整速度逐渐变慢,这个调整速度变化也是比较符合实际情况的。
由式(1)可以得出调整概率函数 ,假设在相同的温度 (时间)的条件下,由于总的车辆数目 是定值,当 时,即第 分区内的节点数大于第 分区的节点数时,分区 调整的概率大些,分区 的调整概率小些。分析其原因:当分区内包含了较多的节点个数时,该分区的警车初始停靠位置选取地比较合适了,而当分区内包含的道路节点数较少时,说明警车的初始停靠位置没有选好,需要更大概率的调整,这样的结论也是比较客观的。
对于所有分区外未被覆盖的道路节点和很多节点(称之为节点群),用来调整警车位置迁移的方向,其分析示意图如图5所示。调整方案目标是使未被覆盖的节点数尽量的少。在设计调整方向函数时,需要考虑:(1)节点群内节点的数目;(2)警车距离节点群的位置。优先考虑距离,所以在公式(2)中,用距离的平方来描述调整方向函数。
由于某一个区域范围内的未被覆盖节点数,整个区域未被覆盖的节点总数,分区域与未被覆盖的节点或节点群的距离等几个因素会影响到调整的方案,所以要综合考虑这些因素。于是设计了区间调整函数 ,
式中, 表示第 个分区内未被覆盖的节点数, 表示第 分区域与未被覆盖的节点或节点群的距离, 表示未被覆盖的节点和节点群个数。
现在简要分析第 分区按区间调整函数的调整方案,当某两节点群 的节点数目相等,但是距离不等时,如 ,由区间调整公式可知,该区间向节点群 方向调整。当某个分区与两个节点群的距离相等,但节点群的内节点个数不相等,如 时,由(4)可知,该分区域会想节点群 方向调整。
注意在整个调整过程中,调整几率控制是否调整,调整方向函数控制调整的方向,寻找在这种调整方案下的最优结果。

图5 调整分区域示意图

(3)在step3中,使用Floyd算法计算出警车初始停靠点到周边各节点的最短距离 ,目的是当区域内有情况发生时,警车能在要求的时间限制内到达现场。
(4)为求出较优的警车停靠点,采用模拟退火算法,算出局部最优的方案。
5.1.4 警车的配置和巡逻方案

使用MATLAB编程实现算法1得到,整个区域配备13辆警车,这些警车静止在初始停靠点时,能满足D1要求。警车的初始停靠位置分别为道路交叉节点6,25,30,37,82,84,110,111,126,214,253,258,278处。每个警车所管辖的交叉点(原始的交叉节点)如图6所示,求解的分区结果见附录所示。
图6 满足D1条件下的区分划分图

13个分区共覆盖了252个交叉点,另外的55个原始交叉点没有被这些分区域覆盖:137,138,151,159,167,168,170,174,175,186,188,189,211,215,226,242,255,260,261,262,263,267,270,271,272,275,282,283 ,284,287,288,289,292,296,297,299,304,305,307。在这种分区方案下,这些点中,每两个相连的点间的道路离散值长度占整个区域总的长度的比值为 。因此,在整个区域配置13辆警车,每个警车在初始停靠点静止不动,当有案件发生时,离案发现场最近的警车从初始停靠点赶到现场。

5.2 评价巡逻效果显着的指标
110警车在街道上巡逻是目的是为了对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时还加快了接处警(接受报警并赶往现场处理事件)时间,提高了反应时效,为社会和谐提供了有力的保障。巡警在城市繁华街道、公共场所执行巡逻任务, 维护治安, 服务群众, 可以得良好的社会效应[1]。
在整个区域中,由于案发现场都在道路上,道路上的每一点都是等概率发生的,因此警车巡逻的面越广,所巡逻的街道数目越多,警车的巡逻效果就越好,对违法犯罪分子就越有威慑力,警车也能更及时地处理案件。
我们采用全面性 来衡量巡逻的效果显着性,即用警车巡逻所经过的街道节点数占区域总节点数的比值。当警车重复经过同一条街道同一个离散点时, 仅记录一次。
(3)
式中, 表示警车经过的离散点数, 代表整个区域总的离散点数。 值越大,表明警车所经过的街道数目越多,所取得的效果越显着。
同时考虑到在巡逻过程中可能会出现这样的情况:在相同的时段内,警车会多次巡逻部分街道,而一些街道却很少巡逻甚至没有警车到达,这样会造成一些巡逻盲区。分布很不均衡。这样就可能出现巡逻密度大的街道上的违法犯罪分子不敢在街道上作案,而流窜到巡逻密度稀疏的街道上作案,因此在相同的警车数目条件下,密度不均衡的巡逻方式的巡逻效果的效果较差,而密度较均衡的巡逻方式所取得的巡逻效果会更好些。我们引入一个巡逻的不均匀度 来衡量巡逻效果的显着性,考虑到方差能表示不均衡度,于是我们用方差的大小来表征不均衡,方差越大,巡逻密度越不均衡,所取得的巡逻效果越差。
(4)

问题1所给出的满足D1条件下的警车数目为13辆,这时每辆警车在初始停靠点静止不动,只有该管辖区域内发生了案件时,警车才从初始停靠点赶到案发现场处理案件。当警车在巡逻状态时,所需要考虑的问题就更复杂一些,如当节点运动时,警车还能否达到D1的要求,警车的运动方向如何等问题,但基本算法思想与问题1类似,所得的算法2的框图如图7所示,
为了简化问题,我们假设各分区警车的巡逻时候,尽量保证所有的警车的行驶方向相一致,且警车都走双行道,即当警车走到某个节点后,它们又同时返回初始停靠点,警车的行驶方向有四种方式,如6所示。
在图6中,数字1代表走巡逻走的第一步,2表示朝1的巡逻方向相反的方向巡逻。在具体程序实现时,四种巡逻方向任意选择,但是尽量保证所有的警车向同一个方向巡逻。

图6 各警车巡逻方向图

我们用MATLAB编程对这种巡逻方式进行计算,所得的车辆数目为18辆,综合评价指标为 ,其结果巡逻方案见附件中的“1193402-Result3.txt”所示。

5.4 在满足问题三的基础上讨论D3条件,警车的巡逻方案和评价指标
巡逻的隐蔽性体现在警车的巡逻路线和时间没有明显的规律,主要目的是让违法犯罪分子无可乘之机,防止他们在非巡逻时间实施违法犯罪活动,危害人民的生命和财产安全。
为了使巡逻的规律具有隐蔽性,这就需要警车在巡逻时至少具有两条不同的路线,时间最好也是不相同的。因此,考虑到隐蔽性时,只需要在问题2的基础上加上一个随机过程即可。对于其评价指标,由于警车有几条可选的巡逻路线,当相同的路线在同一时间内重复出现时,重新将所设定的方案再执行一遍,我们用这个时间间隔来衡量隐蔽性的程度,当循环周期 越大,表明可选的巡逻方案越多,其规律就越具有隐蔽性,而循环周期 越小时,表明巡逻方案比较少,其隐蔽性较差。在巡逻状态时,最差的隐蔽性巡逻方案是巡逻方案只有一个,并且时间固定,这样的巡逻方案没有任何隐蔽性可言。

5.5 整个区域为10辆车时的巡逻方案
由第三问的结果可知,10辆车的数量是不能把整个区域完全覆盖的,其算法与算法2类似,不同的是此时车的数目已经固定了,要求使D1,D2尽量大的满足,我们求得的评价指标值为 ,所得的巡逻方案见附件中的“1193402-Result5.txt”所示。

5.6 平均行驶速度提高到 时的巡逻方式和评价指标值
问题六的分析方法与具体实现与问题三一致,但是警车的接警后的平均速度由原来的 提高到 ,于是各分区的覆盖范围也增大了,将数值带入问题3的算法中求解, 计算得的指标值为 ,其巡逻方案见附件中的“1193402-Result6.txt”所示。

图7 算法2框图

六 模型的分析和评价

在求解满足D1的条件下,整个区域需要配备多少辆警车问题中,采用分区巡逻的思想,先分析能使各区管辖范围达到最大值时的规律,由特殊到一般层层进行分析,逻辑严密,结果合理。
在求解区域和警车数目时,在初步设定警车停靠点位置的基础上,用模拟退火算法思路构造函数 来确定调整的概率大小,综合考虑了影响区间调整的因素后构造了 函数来确定分区的调整方向,当分区按照这两个调整函数进行调整时,各分区能管辖尽可能多的道路节点,所取得效果也比较理想。

参 考 文 献
[1]中小城市警察巡逻勤务方式的探讨,俞详,江苏公安专科学校学报,1998年第1期
[2]Matlab7.0从入门到精通,求是科技,人民邮电出版社;
[3]不确定车数的随机车辆路径问题模型及算法,运怀立等,工业工程,第10卷第3期,2005年5月;
[4]随机交通分配中的有效路径的确定方法,李志纯等,交通运输系统工程与信息,第3卷第1期,2003年2月。

‘肆’ 车辆路径问题的车辆路径问题的发展

1959年Dantzig和Ramse首次对闭合式VRP进行了研究,描述的是将汽油送往各个加油站的实际问题,并首次提出了相应的数学规划模型以及求解算法。
1964年,Clark和Wright[4]一种对Dantzig-Ramse方法改进的有效的启发式算法Clark-Wright节约算法。
正是由于以上两篇开创性论文的发表,使得VRP成为运筹学以及组合优化领域的前沿和研究热点课题。
1969年,Christofides和Eilon应用2-opt[5]和3-opt[6]处理车辆路径问题。
1970年,提出了两阶段方法求解车辆路径问题,包括先分组后定路线(clusterfirst-route second)和先定路线后分组(routefirst-cluster second)两种启发式策略。
1981年,Fisher和Jaikumar提出以数学规划为主的最优化方法来处理包含大约50个顾客点的问题,同样其运算效率是一个亟待解决的问题。同年,Gullen,Jarvis和Ratliff建立了人机互动的启发式方法。
1981年,Bodin and Golden将众多的VRP求解方法进行了归纳。分为以下七种:数学解析法(Exact Procere);人机互动法(Interactive Optimization);先分群再排路线(Cluster First–Route Second);先排路线再分群(Route First–Cluster Second);节省法或插入法(Saving or Insertion);改善或交换法(Improvement or Exchanges);数学规划近似法(Mathematical programming)。
1990年以来,人工智能方法在解决组合优化问题上显示出强大功能,在各个领域得到充分应用,很多学者也将人工智能引入车辆路线问题的求解中,并构造了大量的基于人工智能的启发式算法。 禁忌搜索法(TS)基本上是属于一种人工智能型(AI)的局部搜寻方法,Willard首先将此算法用来求解VRP 。袁庆达[7]等设计了考虑时间窗和不同车辆类型的禁忌算法,这种算法主要采用GA方法产生初始解,然后禁忌算法对初始解优化。模拟退火方法具有收敛速度快,全局搜索的特点,Osman[8]对VRP的模拟退火算法进行了研究。遗传算法具有求解组合优化问题的良好特性,Holland首先采用遗传算法(GA)编码解决VRPTW 问题。现在多数学者采用混合策略,分别采用两种人工智能方法进行路线分组和路线优化。Ombuki[9]提出了用GA进行路线分组,然后用TS方法进行路线优化的混合算法。Bent和Van Hentenryck[10]则首先用模拟退火算法将车辆路线的数量最小化,然后用大邻域搜索法(largneighborhood search)将运输费用降到最低。
综合过去有关VRP的求解方法,可以将其分为精确算法(exact algorithm)与启发式算法(heuristics),其中精确算法有分支界限法、分支切割法、集合涵盖法等;启发式算法有节约法、模拟退火法、确定性退火法、禁忌搜寻法、基因算法、神经网络、蚂蚁殖民算法等。

‘伍’ 图论在数学建模中一般用于哪些类型的题

1 最短路问题(SPP-shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。
2 公路连接问题
某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?
3 指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?
4 中国邮递员问题(CPP-chinese postman problem)
一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。
5 旅行商问题(TSP-traveling salesman problem)
一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。
6 运输问题(transportation problem)
某种原材料有 个产地,现在需要将原材料从产地运往 个使用这些原材料的工厂。假定 个产地的产量和 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?
7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法
8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由Floyd R W提出的算法,称之为Floyd算法。(可以解决第一个问题)
9.prim算法、Kruskal算法构造最小生成树(使所有点连通)
10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题
11.Euler回路的Fleury算法(中国邮递员问题)
12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)

我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……
算法很多网络能到……

‘陆’ “最少换乘、最少用时”,导航是如何帮你规划路线的

首先是用启发式算法来规划路线。以我们导航中常用的“A*算法”和“Dijikstra算法”为代表,从起点出发,以一定的步长展开节点。选择值(如路径长度)最小的节点作为扩展节点,扩展过程中需要考虑一些约束条件,如转弯半径的限制、风险障碍物的避开等,导致扩展角度不可能是全方位的。

要知道的是世界上使用最广泛的定位系统是美国的全球卫星定位系统GPS。这是美国军方从1970年开始研发建立的卫星定位系统。它于1994年完工。它由24颗卫星、一个地面控制站和几个监测站组成,覆盖全球98%的区域。用户只要有GPS接收设备,就可以24小时免费享受定位系统提供的定位时间服务。基于这个原理,只要我们在智能手机上安装好GPS芯片,芯片能够接收卫星信号以及解算信息,就能够确定位置了。

‘柒’ (转)车辆路径问题及行业应用

转自:吉勍Personal http://www.jiqingip.com/page9001?article_id=96

车辆路径问题是运行日常操作所需的操作决策的一部分,都是执行层面的优化问题。先决条件如下:通常情况下,已知资源不能在短时间内扩充,因此资源稀缺是无法避免的。此外,还提供了关于需要满足的需求的详细信息。决策优化的核心挑战是在日常基础上使需求与现有资源相匹配。在这里,必须解决两个基本的决策任务:(1)必须给需求分配资源,(2)必须制定日程安排。日程安排描述了执行分配任务的顺序,以及启动单个操作的起点。最大的挑战是确保不超过现有资源,并以最高效率部署这些资源。

问题描述

车辆路径问题(VRP)是一个组合优化和整数规划问题(解决的是“为了交付给定的一组客户,车辆车队的最佳路线集是什么?”)。它概括了众所周知的旅行推销员问题(TSP)。它最初出现在1959年George Dantzig和John Ramser的论文中《The Truck Dispatching Problem》。这篇论文首先编写了算法,并将其应用于汽油交付。通常,这个问题的背景是将位于中央仓库的货物交付给已经订购此类货物的客户。该问题的目标是最小化总路由成本。车辆路径规划问题在物流领域和生产散枝橘领域的应用非常广泛。所以在实际应用中也出现了一些在标准问题的基础上增加了某些变化之后的变型问题。其中较为常见的包括:

1.         CVRP:Capacitated

VRP, 限制配送车辆的承载体积、重量等。

2.         VRPTW:VRP with

Time Windows, 客户对货物的送达时间有时间窗要求。

3.         VRPPD:VRP with

Pickup and Delivery, 车辆在配送过程中可以一边揽收一边配送,在外卖O2O场景中比较常见。

4.         MDVRP: Multi-Depot

VRP, 配送网络中有多个仓库,同样的货物可以在多个仓库取货。

5.         OVRP:Open VRP, 车辆完成配送任务之后不需要返回仓库。

6.         VRPB: VRP with

backhauls, 车辆完成配送任务之后回程取货。

车辆路径问题

模型描述

TSP问题

TSP问题模型的基本思想是,节点集中包含的每个弧(i; j)要么包含在汉密尔顿路径中(通过所有N个节点的往返行程),要么不包含。在提到的第一种情况下,节点j在节点i之后立即被访问,但是在后一种搭辩情况下,节点j在i离开之后不立即被访问。 TSP决策问题可以简化为以下问题:哪些弧形成了请求的哈密顿冲团路径,哪些弧被忽略了。为了表示这些二元决策,引入了二元决策变量xij(i∈{1,...,N}系列。每个决策变量xij为0或1,xij表示是否为arc(i ; j)是否包含在汉密尔顿路径中,并且仅当在汉密尔顿路径中包含arc(i; j)时,才将xij声明为1;如果不成立,则等于0。d(i,j)表示节点i和节点j之间的距离。

优化目标使所有在哈密顿路径中的所有弧的行程距离之和最小。约束保证了汉密尔顿回路经过所有节点,且每个节点只经过一次。后两条约束保证了汉密尔顿回路是连续而非中断的。

VRP问题

标准的车辆路径规划问题可以使用如下数据模型的形式描述:

在此公式中,(1),(2),(3)和(5)定义了一个修改的分配问题,约束(4)是子行程消除约束:v(S)是在最佳解决方案中访问S的所有顶点所需的车辆数量的适当下限。其他变型VRP问题则可以在此模型基础上做适当的调整。

算法服务

有很多实际的业务场景,即时配、大件配送、冷链配送、门店补货等,都可以通过VRP问题优化其配送成本。这些业务场景属于不同的业态,所使用的业务系统也不尽相同,因此构建可灵活配置的VRP算法服务平台,可达成一次构建,多业务系统调用,多场景应用的效果。

行业应用

克里斯蒂娜在RED SEA BUS

TRAVEL(RSBT)工作。该公司在洪加达地区提供运输服务。国际旅行社预订RSBT服务业务,以确保将他们的游客转移到他们偏爱的度假区。克里斯蒂娜(Christina)被分配到洪加达市中心的RSBT计划和调度办公室。经过数年的复杂经营,RSBT发现来自旅行社的预订量不断增加,但来自个人客户的预订量却不断增加。这些预订可以分为以下四个类别:

1)         豪华轿车服务(LS)

2)         观光游览(SST)

3)         机场到达接送(AAT)

4)         机场出发接送(ADT)

Christina现在的任务是分析LS,SST,AAT和ADT这四种产品,并就如何进行可用巴士(它们是可用资源)的日常部署提出建议。在满足所有预订要求的同时,以最有效的方式使用这些资源。克里斯蒂娜(Christina)在RSBT的第一周就曾陪同过几项运输服务,她发现了四个业务领域的核心规划挑战:

LS:通过当地道路网络从豪华轿车服务总部到机场的最短(最快)路径是什么?如何确定此路径?

SST:应该以什么顺序参观所有的旅游景点,以便游客有足够的时间在酒店享受休闲时光?

AAT:将与入境航班相关的所有入境旅客带到酒店的最小旅行距离是多少?最少需要多少辆巴士?

ADT:如果客户在预定航班起飞前不超过5小时不接受接送服务,那辆巴士应该接送哪家酒店的客人以准时送他们到机场?

通过分析发现,克里斯蒂娜(Christina)需要解决的问题通过VRP算法平台可以有效的给出计划和调度方案。

首先从业务生产系统录入相关信息,这些信息经过数据资产管理处理后,将数据传给VRP算法中台,经算法中台处理后再返回给业务生产系统,生成业务系统的业务数据给业务系统使用。

阅读全文

与运输车辆路线使用图论算法吗相关的资料

热点内容
网盘忘记解压码怎么办 浏览:850
文件加密看不到里面的内容 浏览:649
程序员脑子里都想什么 浏览:428
oppp手机信任app在哪里设置 浏览:183
java地址重定向 浏览:268
一年级下册摘苹果的算法是怎样的 浏览:448
程序员出轨电视剧 浏览:88
服务器系统地址怎么查 浏览:54
解压游戏发行官 浏览:601
国外小伙解压实验 浏览:336
顶级大学开设加密货币 浏览:437
java重载与多态 浏览:528
腾讯应届程序员 浏览:942
一键编译程序 浏览:129
语音加密包哪个好 浏览:339
有什么学习高中语文的app 浏览:282
安卓手机的表格里怎么打勾 浏览:409
阿里云服务器有网络安全服务吗 浏览:969
超解压兔子视频 浏览:24
单片机怎么测负脉冲 浏览:174