㈠ 数据结构之贪心算法
贪婪算法(Greedy)的定义:是一种在每一步选中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法。
贪婪算法:当下做局部最优判断,不能回退
(能回退的是回溯,最优+回退是动态规划)
由于贪心算法的高效性以及所求得答案比较接近最优结果,贪心算法可以作为辅助算法或解决一些要求
结果不特别精确的问题
注意:当下是最优的,并不一定全局是最优的。举例如下:
有硬币分值为10、9、4若干枚,问如果组成分值18,最少需要多少枚硬币?
采用贪心算法,选择当下硬币分值最大的:10
18-10=8
8/4=2
即:1个10、2个4,共需要3枚硬币
实际上我们知道,选择分值为9的硬币,2枚就够了
18/9=2
如果改成:
背包问题是算法的经典问题,分为部分背包和0-1背包,主要区别如下:
部分背包:某件物品是一堆,可以带走其一部分
0-1背包:对于某件物品,要么被带走(选择了它),要么不被带走(没有选择它),不存在只带走一部分的情况。
部分背包问题可以用贪心算法求解,且能够得到最优解。
假设一共有N件物品,第 i 件物品的价值为 Vi ,重量为Wi,一个小偷有一个最多只能装下重量为W的背包,他希望带走的物品越有价值越好,可以带走某件物品的一部分,请问:他应该选择哪些物品?
假设背包可容纳50Kg的重量,物品信息如下表:
将物品按单位重量 所具有的价值排序。总是优先选择单位重量下价值最大的物品
按照我们的贪心策略,单位重量的价值排序: 物品A > 物品B > 物品C
因此,我们尽可能地多拿物品A,直到将物品1拿完之后,才去拿物品B,然后是物品C 可以只拿一部分.....
在不考虑排序的前提下,贪心算法只需要一次循环,所以时间复杂度是O(n)
优点:性能高,能用贪心算法解决的往往是最优解
缺点:在实际情况下能用的不多,用贪心算法解的往往不是最好的
针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。
每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据(局部最优而全局最优)
大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明
在实际情况下,用贪心算法解决问题的思路,并不总能给出最优解
㈡ 贪心算法及其应用
求解一个问题时有多个步骤,每个步骤都选择当下最优的那个解,而不用考虑整体的最优解。通常,当我们面对的问题拥有以下特点的时候,就可以考虑使用贪心算法。
比如,我们举个例子,仓库里面总共有五种豆子,其对应的重量和总价值如下,现在我们有一个可以装100KG重量的袋子,怎么装才能使得袋子中的豆子价值最大?
我们首先看看这个问题是否符合贪心算法的使用场景?限制值是袋子100KG,期望值是袋子里面的价值最高。所以是符合的。那么我们尝试着应用下贪心算法的方法,每一个步骤都寻找当下的最优解,怎么做呢?
把仓库里面的每种豆子价值除以重量,得出每种豆子的单价,那么当下的最优解,肯定是尽可能最多地装单价最贵的,也就是先把20KG的黄豆都装上,然后再把30KG的绿豆都装上,再装50KG的红豆,那么此时正好装满袋子,总价值将是270元,这就是通过贪心算法求解的答案。
贪心算法的应用在这个问题上的求解是否是最优解需要一个很复杂的数学论证,我们不用那样,只要心里举几个例子,验证下是否比它更好即可,如果举不出例子,那么就可以认为这就是最优解了。
虽然贪心算法虽然在大部分实践场景中都能得到最优解,但是并不能保证一定是最优解。比如在如下的有向带权图中寻找从S到T的最短路径,那么答案肯定就是S->A->E->T,总代价为1+4+4=9;
然而,实际上的最短路径是S->B->D->T,总代价为6。
所以,不能所有这类问题都迷信贪心算法的求解,但其作为一种算法指导思想,还是很值得学习的。
除了以上袋子装豆子的问题之外,还有很多应用场景。这种问题能否使用贪心算法来解决的关键是你能否将问题转换为贪心算法适用的问题,即找到问题的限制值和期望值。
我们有m个糖果要分给n个孩子,n大于m,注定有的孩子不能分到糖果。其中,每个糖果的大小都不同,分别为S1,S2,S3...,Sm,每个孩子对糖果的需求也是不同的,为N1,N2,N3...,Nn,那么我们如何分糖果,才能尽可能满足最多数量孩子的需求?
这个问题中,限制值是糖果的数量m,期望值满足最多的孩子需求。对于每个孩子,能用小的糖果满足其需求,就不要用大的,避免浪费。所以我们可以给所有孩子的需求排个序,从需求最小的孩子开始,用刚好能满足他的糖果来分给他,以此来分完所有的糖果。
我们有1元、5元、10元、20元、50元、100元纸币各C1、C5、C10、C20、C50、C100张,现在要购买一个价值K元的东西,请问怎么才能适用最少的纸币?
这个问题应该不难,限制值是各个纸币的张数,期望值是适用最少的纸币。那么我们就先用面值最大的100元去付钱,当再加一张100元就超过K时,就更换小面额的,直至正好为K元。
对于n个区间[L1,R1],[L2,R2]...[Ln,Rn],我们怎么从中选出尽可能多的区间,使它们不相交?
我们需要把这个问题转换为符合贪心算法特点的问题,假设这么多区间的最左端点是Lmin,最右端点是Rmax,那么问题就是在[Lmin,Rmax]中,选择尽可能多的区间往里面塞,并且保证它们不相交。这里,限制值就是区间[Lmin,Rmax],期望值就是尽可能多的区间。
我们的解决办法就是每次从区间中选择那种左端点>=已经覆盖区间右边端点的,且该区间右端点尽可能高小的。如此,我们可以让未覆盖区间尽可能地大,才能保证可以塞进去尽可能多的区间。
贪心算法最重要的就是学会如何将要解决的问题抽象成适合贪心算法特点的模型,找到限制条件和期望值,只要做好这一步,接下来的就比较简单了。在平时我们不用刻意去记,多多练习类似的问题才是最有效的学习方法。
㈢ 贪心算法总结 Greedy Algorithms
反证法:乱正
假设贪心不是最优解:
先考虑如何排序
Exchange argument:通过交换元素将最优解转换为贪心解,但还保持最优性
当cache中不存在所需元素时,需要访问cache交换元素。
目标:cache misses的次数最少
最优算法:cache miss时替换当前future queries中最远访问的元素。
e.g. future queries中第一个元素g出现cache miss, 需要exchange,判断current cache中需要替换哪个元素。
在future queries中
思路:构造最优规划 ,它有最小的cache misses次数;Farthest-In-Future规划 ,两者在前 个请求的序列是相同的,如果能证明在第 步时, 可以转化为 并且没有增加cache misses的次数,则可以说明 是最优解。
最开始,假设 和 中元素如下:
Case 1: 元素已经在Cache中
假设下一个请求的元素是d显然两者都不会发生cache miss,故两者总的cache misses次数还是相同;
Case 2: 元素不在Cache中, 和 与外界哗李悔交换相同的元素
假设下一个请求的元素是e,两者都用a与其交换,有
和 都增加了一次扰扒cache misses,故总cache misses次数还是相同;
Case 3: 元素不在Cache中, 和 与外界交换不同的元素
假设下一个请求的元素是e, 交换a, 交换b,有
之后,下一个请求的元素有四种情况:
Case 3a: 元素在 中, 不在 中; S交换a
也就是请求b,这时S用a交换b,有
有两次cache misses,而 只有一次,之后 和 序列又保持一致;
Case 3b: 元素在 中, 不在 中; S不交换a
也就是请求b,S用c交换b,有
用a交换c,有
两者cache misses次数相同,之后 和 序列又保持一致
Case 3c: 元素在 中, 不在 中
即请求a,这种情况不可能发生,因为S_{FF}移出的是最远需要的元素,即request中a会排在b之后;
Case 3d: 元素不在 和 中
假设请求f, 用a交换f, 用b交换f,有
两者cache misses次数相同,之后 和 序列又保持一致
的cache misses次数不会多于最优解 , 即 是最优解。
Single-link k-clustering 算法:
㈣ 什么是贪心算法,用实例分析贪心算法是如何解决实际问题
比如: int a=3,b=4,c; c=a+++b; 将被解释为 c=(a++)+b; 而不会被解释为 c=a+(++b); 贪心算法的主要意义是从左至右依次解释最多的符号!
㈤ 大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系
对于,大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系这个问题,首先要来聊聊他们的联系:1、都是一种推导算法;2、将它们分解为子问题求解,它们都需要有最优子结构。这两个特征师门的联系。
拓展资料:
贪婪算法是指在解决问题时,它总是在当前做出最佳选择。也就是说,在不考虑全局优化的情况下,该算法在某种意义上获得了局部最优解。贪婪算法不能得到所有问题的全局最优解。关键是贪婪策略的选择。
动态规划是运筹学的一个分支,是解决决策过程优化的过程。20世纪50年代初,美国数学家R·贝尔曼等人在研究多阶段决策过程的最优化问题时,提出了着名的最优化原理,建立了动态规划。动态规划在工程技术、经济、工业生产、军事和自动控制等领域有着广泛的应用,在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题上都取得了显着的成果。
㈥ 贪心算法的基本思路
1.建立数学模型来描述问题
⒉把求解的问题分成若干个子问题。
⒊对每一子问题求解,得到子问题的局部最优解。
⒋把子问题的解局部最优解合成原来解问题的一个解。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步
do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解。
下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。
㈦ 程序员算法基础——贪心算法
贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。
比如一道常见的算法笔试题---- 跳一跳 :
我们自然而然能产生一种解法:尽可能的往右跳,看最后是否能到达。
本文即是对这种贪心决策的介绍。
狭义的贪心算法指的是解最优化问题的一种特殊方法,解决过程中总是做出当下最好的选择,因为具有最优子结构的特点,局部最优解可以得到全局最优解;这种贪心算法是动态规划的一种特例。 能用贪心解决的问题,也可以用动态规划解决。
而广义的贪心指的是一种通用的贪心策略,基于当前局面而进行贪心决策。以 跳一跳 的题目为例:
我们发现的题目的核心在于 向右能到达的最远距离 ,我们用maxRight来表示;
此时有一种贪心的策略:从第1个盒子开始向右遍历,对于每个经过的盒子,不断更新maxRight的值。
贪心的思考过程类似动态规划,依旧是两步: 大事化小 , 小事化了 。
大事化小:
一个较大的问题,通过找到与子问题的重叠,把复杂的问题划分为多个小问题;
小事化了:
从小问题找到决策的核心,确定一种得到最优解的策略,比如跳一跳中的 向右能到达的最远距离 ;
在证明局部的最优解是否可以推出全局最优解的时候,常会用到数学的证明方式。
如果是动态规划:
要凑出m元,必须先凑出m-1、m-2、m-5、m-10元,我们用dp[i]表示凑出i元的最少纸币数;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根据以上递推方程和初始化信息,可以容易推出dp[1~m]的所有值。
似乎有些不对? 平时我们找零钱有这么复杂吗?
从贪心算法角度出发,当m>10且我们有10元纸币,我们优先使用10元纸币,然后再是5元、2元、1元纸币。
从日常生活的经验知道,这么做是正确的,但是为什么?
假如我们把题目变成这样,原来的策略还能生效吗?
接下来我们来分析这种策略:
已知对于m元纸币,1,2,5元纸币使用了a,b,c张,我们有a+2b+5c=m;
假设存在一种情况,1、2、5元纸币使用数是x,y,z张,使用了更少的5元纸币(z<c),且纸币张数更少(x+y+z<a+b+c),即是用更少5元纸币得到最优解。
我们令k=5*(c-z),k元纸币需要floor(k/2)张2元纸币,k%2张1元纸币;(因为如果有2张1元纸币,可以使用1张2元纸币来替代,故而1元纸币只能是0张或者1张)
容易知道,减少(c-z)张5元纸币,需要增加floor(5*(c-z)/2)张2元纸币和(5*(c-z))%2张纸币,而这使得x+y+z必然大于a+b+c。
由此我们知道不可能存在使用更少5元纸币的更优解。
所以优先使用大额纸币是一种正确的贪心选择。
对于1、5、7元纸币,比如说要凑出10元,如果优先使用7元纸币,则张数是4;(1+1+1+7)
但如果只使用5元纸币,则张数是2;(5+5)
在这种情况下,优先使用大额纸币是不正确的贪心选择。(但用动态规划仍能得到最优解)
如果是动态规划:
前i秒的完成的任务数,可以由前面1~i-1秒的任务完成数推过来。
我们用 dp[i]表示前i秒能完成的任务数 ;
在计算前i秒能完成的任务数时,对于第j个任务,我们有两种决策:
1、不执行这个任务,那么dp[i]没有变化;
2、执行这个任务,那么必须腾出来(Sj, Tj)这段时间,那么 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如说对于任务j如果是第5秒开始第10秒结束,如果i>=10,那么有 dp[i]=max(dp[i], dp[5] + 1); (相当于把第5秒到第i秒的时间分配给任务j)
再考虑贪心的策略,现实生活中人们是如何安排这种多任务的事情?我换一种描述方式:
我们自然而然会想到一个策略: 先把结束时间早的兼职给做了!
为什么?
因为先做完这个结束时间早的,能留出更多的时间做其他兼职。
我们天生具备了这种优化决策的能力。
这是一道 LeetCode题目 。
这个题目不能直接用动态规划去解,比如用dp[i]表示前i个人需要的最少糖果数。
因为(前i个人的最少糖果数)这种状态表示会收到第i+1个人的影响,如果a[i]>a[i+1],那么第i个人应该比第i+1个人多。
即是 这种状态表示不具备无后效性。
如果是我们分配糖果,我们应该怎么分配?
答案是: 从分数最低的开始。
按照分数排序,从最低开始分,每次判断是否比左右的分数高。
假设每个人分c[i]个糖果,那么对于第i个人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默认为0,如果在计算i的时候,c[i-1]为0,表示i-1的分数比i高)
但是,这样解决的时间复杂度为 O(NLogN) ,主要瓶颈是在排序。
如果提交,会得到 Time Limit Exceeded 的提示。
我们需要对贪心的策略进行优化:
我们把左右两种情况分开看。
如果只考虑比左边的人分数高时,容易得到策略:
从左到右遍历,如果a[i]>a[i-1],则有c[i]=c[i-1]+1;否则c[i]=1。
再考虑比右边的人分数高时,此时我们要从数组的最右边,向左开始遍历:
如果a[i]>a[i+1], 则有c[i]=c[i+1]+1;否则c[i]不变;
这样讲过两次遍历,我们可以得到一个分配方案,并且时间复杂度是 O(N) 。
题目给出关键信息:1、两个人过河,耗时为较长的时间;
还有隐藏的信息:2、两个人过河后,需要有一个人把船开回去;
要保证总时间尽可能小,这里有两个关键原则: 应该使得两个人时间差尽可能小(减少浪费),同时船回去的时间也尽可能小(减少等待)。
先不考虑空船回来的情况,如果有无限多的船,那么应该怎么分配?
答案: 每次从剩下的人选择耗时最长的人,再选择与他耗时最接近的人。
再考虑只有一条船的情况,假设有A/B/C三个人,并且耗时A<B<C。
那么最快的方案是:A+B去, A回;A+C去;总耗时是A+B+C。(因为A是最快的,让其他人来回时间只会更长, 减少等待的原则 )
如果有A/B/C/D四个人,且耗时A<B<C<D,这时有两种方案:
1、最快的来回送人方式,A+B去;A回;A+C去,A回;A+D去; 总耗时是B+C+D+2A (减少等待原则)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;总耗时是 3B+D+A (减少浪费原则)
对比方案1、2的选择,我们发现差别仅在A+C和2B;
为何方案1、2差别里没有D?
因为D最终一定要过河,且耗时一定为D。
如果有A/B/C/D/E 5个人,且耗时A<B<C<D<E,这时如何抉择?
仍是从最慢的E看。(参考我们无限多船的情况)
方案1,减少等待;先送E过去,然后接着考虑四个人的情况;
方案2,减少浪费;先送E/D过去,然后接着考虑A/B/C三个人的情况;(4人的时候的方案2)
到5个人的时候,我们已经明显发了一个特点:问题是重复,且可以由子问题去解决。
根据5个人的情况,我们可以推出状态转移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根据我们考虑的1、2、3、4个人的情况,我们分别可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);
由上述的状态转移方程和初始化值,我们可以推出dp[n]的值。
贪心的学习过程,就是对自己的思考进行优化。
是把握已有信息,进行最优化决策。
这里还有一些收集的 贪心练习题 ,可以实践练习。
这里 还有在线分享,欢迎报名。
㈧ 算法分析与设计这门课程第四章贪心算法的知识点有哪些
算法分析与设计这门课第四章贪心算法的知识点包含章节导引,第一节活动安排问题,第二节贪心算法基本要素,第三节最优装载,第四节单源最短路径,第五节多机调度问题,课后练习,。