① 节约里程法求解最短路问题
你只要记住2点之间直线最短。
节约里程法是用来解决运输车辆数目不确定的问题的最有名的启发式算法。
1、节约里程法优化过程分为并行方式和串行方式两种。核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减小的幅度最大,直到达到一辆车的装载限制时,再进行下一辆车的优化。
2、节约里程法最短路径是两点之间直线最短。最短路径是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
3、在路径优化问题还包括节约里程法,遗传算法,神经网络这几种算法。其中遗传算法相对简便,由于遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。这一转换操作就叫做编码。
② 路由器的最短路径算法
有一种最短路径算法A,它主衡昌要是根据网络中某个节点,找出该节点到达其他所有节点的最短路径。
它的计算过程是,第一步找出该节点最短路径咐银扒值的相邻节点,然后再通过该相邻节点找出与该相邻节点最短路径值的另一节点,搏空再重复第一步,直到扩展到所有节点,就算出一条最短路径
③ java 最短路径算法 如何实现有向 任意两点的最短路径
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
[java] view plain
public class Node {
private String name;
private Map<Node,Integer> child=new HashMap<Node,Integer>();
public Node(String name){
this.name=name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Map<Node, Integer> getChild() {
return child;
}
public void setChild(Map<Node, Integer> child) {
this.child = child;
}
}
MapBuilder用于初始化数据源,返回图的起始节点
[java] view plain
public class MapBuilder {
public Node build(Set<Node> open, Set<Node> close){
Node nodeA=new Node("A");
Node nodeB=new Node("B");
Node nodeC=new Node("C");
Node nodeD=new Node("D");
Node nodeE=new Node("E");
Node nodeF=new Node("F");
Node nodeG=new Node("G");
Node nodeH=new Node("H");
nodeA.getChild().put(nodeB, 1);
nodeA.getChild().put(nodeC, 1);
nodeA.getChild().put(nodeD, 4);
nodeA.getChild().put(nodeG, 5);
nodeA.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeA, 1);
nodeB.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeH, 4);
nodeC.getChild().put(nodeA, 1);
nodeC.getChild().put(nodeG, 3);
nodeD.getChild().put(nodeA, 4);
nodeD.getChild().put(nodeE, 1);
nodeE.getChild().put(nodeD, 1);
nodeE.getChild().put(nodeF, 1);
nodeF.getChild().put(nodeE, 1);
nodeF.getChild().put(nodeB, 2);
nodeF.getChild().put(nodeA, 2);
nodeG.getChild().put(nodeC, 3);
nodeG.getChild().put(nodeA, 5);
nodeG.getChild().put(nodeH, 1);
nodeH.getChild().put(nodeB, 4);
nodeH.getChild().put(nodeG, 1);
open.add(nodeB);
open.add(nodeC);
open.add(nodeD);
open.add(nodeE);
open.add(nodeF);
open.add(nodeG);
open.add(nodeH);
close.add(nodeA);
return nodeA;
}
}
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
[java] view plain
public class Dijkstra {
Set<Node> open=new HashSet<Node>();
Set<Node> close=new HashSet<Node>();
Map<String,Integer> path=new HashMap<String,Integer>();//封装路径距离
Map<String,String> pathInfo=new HashMap<String,String>();//封装路径信息
public Node init(){
//初始路径,因没有A->E这条路径,所以path(E)设置为Integer.MAX_VALUE
path.put("B", 1);
pathInfo.put("B", "A->B");
path.put("C", 1);
pathInfo.put("C", "A->C");
path.put("D", 4);
pathInfo.put("D", "A->D");
path.put("E", Integer.MAX_VALUE);
pathInfo.put("E", "A");
path.put("F", 2);
pathInfo.put("F", "A->F");
path.put("G", 5);
pathInfo.put("G", "A->G");
path.put("H", Integer.MAX_VALUE);
pathInfo.put("H", "A");
//将初始节点放入close,其他节点放入open
Node start=new MapBuilder().build(open,close);
return start;
}
public void computePath(Node start){
Node nearest=getShortestPath(start);//取距离start节点最近的子节点,放入close
if(nearest==null){
return;
}
close.add(nearest);
open.remove(nearest);
Map<Node,Integer> childs=nearest.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){//如果子节点在open中
Integer newCompute=path.get(nearest.getName())+childs.get(child);
if(path.get(child.getName())>newCompute){//之前设置的距离大于新计算出来的距离
path.put(child.getName(), newCompute);
pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName());
}
}
}
computePath(start);//重复执行自己,确保所有子节点被遍历
computePath(nearest);//向外一层层递归,直至所有顶点被遍历
}
public void printPathInfo(){
Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet();
for(Map.Entry<String, String> pathInfo:pathInfos){
System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
}
}
/**
* 获取与node最近的子节点
*/
private Node getShortestPath(Node node){
Node res=null;
int minDis=Integer.MAX_VALUE;
Map<Node,Integer> childs=node.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){
int distance=childs.get(child);
if(distance<minDis){
minDis=distance;
res=child;
}
}
}
return res;
}
}
Main用于测试Dijkstra对象
[java] view plain
public class Main {
public static void main(String[] args) {
Dijkstra test=new Dijkstra();
Node start=test.init();
test.computePath(start);
test.printPathInfo();
}
}
④ 最短路径的解决方法
用于解决最短路径问题的算法被称做“最短路径算法”, 有时被简称作“路径算法”。 最常用的路径算法有:
Dijkstra算法
SPFA算法Bellman-Ford算法
Floyd算法Floyd-Warshall算法
Johnson算法
A*算法
所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V到V中的每个结点的最短路径。
首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。
⑤ 洋葱数学最短路径问题
确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径裂喊腊方向反转的确定起点的问题。
所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点渗喊S∈V到V中的每个结点的最短路径。首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。
最短路径算法
Dijkstra算法(迪杰斯特拉)是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算肆滑法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。可以用堆优化。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
⑥ 路由算法的类型有
路由算法有很多种,如果从路由表对网络拓扑和通信量变化的自适应能力的角度划分,可以分为静态路由算法和动态路由算法两大类,这两大类又可细分为几种小类型,比较典型常见的有以下几种:
一、静态路由算法
1.Dijkstra算法(最短路径算法)
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权回路。
Dijkstra算法执行步骤如下:
步骤一:路由器建立一张网络图,并且确定源节点和目的节点,在这个例子里我们设为V1和V2。然后路由器建立一个矩阵,称为“邻接矩阵”。在这个矩阵中,各矩阵元素表示权值。例如,[i,j]是节点Vi与Vj之间的链路权值。如果节点Vi与Vj之间没有链路直接相连,它们的权值设为“无穷大”。
步骤二:路由器为网路中的每一个节点建立一组状态记录。此记录包括三个字段:
前序字段———表示当前节点之前的节点。
长度字段———表示从源节点到当前节点的权值之和。
标号字段———表示节点的状态。每个节点都处于一个状态模式:“永久”或“暂时”。
步骤三:路由器初始化(所有节点的)状态记录集参数,将它们的长度设为“无穷大”,标号设为“暂时”。
步骤四:路由器设置一个T节点。例如,如果设V1是源T节点,路由器将V1的标号更改为“永久”。当一个标号更改为“永久”后,它将不再改变。一个T节点仅仅是一个代理而已。
步骤五:路由器更新与源T节点直接相连的所有暂时性节点的状态记录集。
步骤六:路由器在所有的暂时性节点中选择距离V1的权值最低的节点。这个节点将是新的T节点。
步骤七:如果这个节点不是V2(目的节点),路由器则返回到步骤5。
步骤八:如果节点是V2,路由器则向前回溯,将它的前序节点从状态记录集中提取出来,如此循环,直到提取到V1为止。这个节点列表便是从V1到V2的最佳路由。
2.扩散法
事先不需要任何网络信息;路由器把收到的每一个分组,向除了该分组到来的线路外的所有输出线路发送。将来会有多个分组的副本到达目的地端,最先到达的,可能是走了“最优”的路径常见的扩散法是选择性扩散算法。
3.LS算法
采用LS算法时,每个路由器必须遵循以下步骤:
步骤一:确认在物理上与之相连的路由器并获得它们的IP地址。当一个路由器开始工作后,它首先向整个网络发送一个“HELLO”分组数据包。每个接收到数据包的路由器都将返回一条消息,其中包含它自身的IP地址。
步骤二:测量相邻路由器的延时(或者其他重要的网络参数,比如平均流量)。为做到这一点,路由器向整个网络发送响应分组数据包。每个接收到数据包的路由器返回一个应答分组数据包。将路程往返时间除以2,路由器便可以计算出延时。(路程往返时间是网络当前延迟的量度,通过一个分组数据包从远程主机返回的时间来测量。)该时间包括了传输和处理两部分的时间——也就是将分组数据包发送到目的地的时间以及接收方处理分组数据包和应答的时间。
步骤三:向网络中的其他路由器广播自己的信息,同时也接收其他路由器的信息。
在这一步中,所有的路由器共享它们的知识并且将自身的信息广播给其他每一个路由器。这样,每一个路由器都能够知道网络的结构以及状态。
步骤四:使用一个合适的算法,确定网络中两个节点之间的最佳路由。
路由算法有哪些类型?路由算法与路由协议的区别
在这一步中,路由器选择通往每一个节点的最佳路由。它们使用一个算法来实现这一点,如Dijkstra最短路径算法。在这个算法中,一个路由器通过收集到的其他路由器的信息,建立一个网络图。这个图描述网络中的路由器的位置以及它们之间的链接关系。每个链接都有一个数字标注,称为权值或成本。这个数字是延时和平均流量的函数,有时它仅仅表示节点间的跃点数。例如,如果一个节点与目的地之间有两条链路,路由器将选择权值最低的链路。
二、动态路由算法
1.距离向量路由算法
距离向量路由算法,也叫做最大流量算法,其被距离向量协议作为一个算法,如RIP、BGP、ISO IDRP、NOVELL IPX。使用这个算法的路由器必须掌握这个距离表(它是一个一维排列-“一个向量”),它告诉在网络中每个节点的最远和最近距离。在距离表中的这个信息是根据临近接点信息的改变而时时更新的。表中数据的量和在网络中的所有的接点(除了它自己本身)是等同的。这个表中的列代表直接和它相连的邻居,行代表在网络中的所有目的地。每个数据包括传送数据包到每个在网上的目的地的路径和距离/或时间在那个路径上来传输(我们叫这个为“成本”)。这个在那个算法中的度量公式是跳跃的次数,等待时间,流出数据包的数量,等等。在距离向量路由算法中,相邻路由器之间周期性地相互交换各自的路由表备份。当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。其优点是算法简单容易实现。缺点是慢收敛问题,路由器的路径变化需要像波浪一样从相邻路由器传播出去,过程缓慢。
每一个相邻路由器发送过来的路由表都要经过以下步骤:
步骤一:对地址为X的路由器发过来的路由表,先修改此路由表中的所有项目:把”下一跳”字段中的地址改为X,并把所有”距离”字段都加1。
步骤二:对修改后的路由表中的每一个项目,进行以下步骤:
(1)将X的路由表(修改过的),与S的路由表的目的网络进行对比。若在X中出现,在S中没出现,则将X路由表中的这一条项目添加到S的路由表中。
(2)对于目的网络在S和X路由表中都有的项目进行下面步骤:
1)在S的路由表中,若下一跳地址是x,则直接用X路由表中这条项目替换S路由表中的项目。
2)在S的路由表中,若下一跳地址不是x,若X路由表项目中的距离d小于S路由表中的距离,则进行更新。
步骤三:若3分钟还没有收到相邻路由器的更新表,则把此相邻路由器记为不可到达路由器,即把距离设置为16。
2.链路状态最短路由优先算法SPF
1)发现邻居结点,并学习它们的网络地址;
2)测量到各邻居节点的延迟或者开销;
3)创建链路状态分组;
4)使用扩散法发布链路状态分组;
5)计算到每个其它路由器的最短路径。
⑦ 计算机网络的最短路径算法有哪些对应哪些协议
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
Dijkstra算法、A*算法、SPFA算法、Bellman-Ford算法和Floyd-Warshall算法,本文主要介绍其中的三种。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:
确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
全局最短路径问题:求图中所有的最短路径。
Floyd
求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。
Floyd-Warshall的原理是动态规划:
设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。
若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;
若最短路径不经过点k,则Di,j,k = Di,j,k-1。
因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。
在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。
Floyd-Warshall算法的描述如下:
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
if (Di,k + Dk,j < Di,j) then
Di,j ← Di,k + Dk,j;
其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。
Dijkstra
求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。
当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
Bellman-Ford
求单源最短路,可以判断有无负权回路(若有,则不存在最短路),时效性较好,时间复杂度O(VE)。
Bellman-Ford算法是求解单源最短路径问题的一种算法。
单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。
与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。设想从我们可以从图中找到一个环
路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA
是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k< 与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。
与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA。
⑧ 网络层路由算法有几种,请简述其
静态路由算法主要有:
洪泛法(Flooding)
随机走动法(Random Walk)
最短路径法(Shortest Path,SP)
基于流量的路由算法(Flow-based Routing,FR)</ol>动态路由算法主要有:
距离矢量算法(RIP)
链路状态算法(OSPF)
平衡混合算法(EIGRP)</ol>
⑨ vc环境 最短路径算法
单源最短路径算法---Dijkstra算法
转自:http://space.flash8.net/space/html/07/14107_itemid_400760.html
算法介绍
Dijkstra算法是由荷兰计算机科学家艾兹格·迪科斯彻发现的。算法解决的是有向图中最短路径问题。
举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。 Dijkstra算法可以用来找到两个城市之间的最短路径。
Dijkstra 算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 (u,v)表示从顶点u到v有路径相连。我们以E所有边的集合,而边的权重则由权重函数w: E → [0, ∞]定义。因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。边的花费可以想象成两个顶点之间的距离。任两点间路径的花费值,就是该路径 上所有边的花费值总和。已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e. 最短路径)。这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。
算法描述
这个算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。 初始时,源点s的路径长度值被赋为0(d[s]=0),同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有 顶点v除s外d[v]= ∞)。当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。 Dijstra算法的基础操作是边的拓展:如果存在一条从u到v的边,那么从s到u的最短路径可以通过将边(u,v)添加到尾部来拓展一条从s到v的路 径。这条路径的长度是d[u]+w(u,v)。如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。拓展边的操作一直执行 到所有的d[v]都代表从s到v最短路径的花费。这个算法经过组织因而当d[u]达到它最终的值的时候没条边(u,v)都只被拓展一次。
算法维护两个顶点集S和Q。集合S保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q则保留其他所有顶点。集合S初始状态为空,而后每一步 都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d[u]值的顶点。当一个顶点u从Q中转移到了S中,算法对每条外接边(u,v)进行拓展。
伪码
在下面的算法中,u:=Extract_Min(Q)在在顶点集Q中搜索有最小的d[u]值的顶点u。这个顶点被从集合Q中删除并返回给用户。
function Dijkstra(G, w, s)
// 初始化
for each vertex v in V[G] {
d[v] := infinity
previous[v] := undefined
d[s] := 0
}
S := empty set
Q := set of all vertices
while Q is not an empty set { // Dijstra算法主体
u := Extract_Min(Q)
S := S union {u}
for each edge (u,v) outgoing from u
if d[v] > d[u] + w(u,v) // 拓展边(u,v)
d[v] := d[u] + w(u,v)
previous[v] := u
}
如果我们只对在s和t之间寻找一条最短路径的话,我们可以在第9行添加条件如果满足u=t的话终止程序。
现在我们可以通过迭代来回溯出s到t的最短路径
1 S := empty sequence
2 u := t
3 while defined u
4 insert u to the beginning of S
5 u := previous[u]
现在序列S就是从s到t的最短路径的顶点集.
时间复杂度
我们可以用大O符号将Dijkstra算法的运行时间表示为边数m和顶点数n的函数。
Dijkstra算法最简单的实现方法是用一个链表或者数组来存储所有顶点的集合Q,所以搜索Q中最小元素的运算(Extract-Min(Q))只需要线性搜索Q中的所有元素。这样的话算法的运行时间是O(n2)。
对 于边数少于n2稀疏图来说,我们可以用邻接表来更有效的实现Dijkstra算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来寻找最小的顶点 (Extract-Min)。当用到二叉堆的时候,算法所需的时间为O((m+n)log n),斐波纳契堆能稍微提高一些性能,让算法运行时间达到O(m + n log n)。
相关问题和算法
在Dijkstra 算法的基础上作一些改动,可以扩展其功能。例如,有时希望在求得最短路径的基础上再列出一些次短的路径。为此,可先在原图上计算出最短路径,然后从图中删 去该路径中的某一条边,在余下的子图中重新计算最短路径。对于原最短路径中的每一条边,均可求得一条删去该边后子图的最短路径,这些路径经排序后即为原图 的一系列次短路径。
OSPF(open shortest path first, 开放最短路径优先)算法是Dijkstra算法在网络路由中的一个具体实现。
与Dijkstra算法不同,Bellman-Ford算法可用于具有负花费边的图,只要图中不存在总花费为负值且从源点 s 可达的环路(如果有这样的环路,则最短路径不存在,因为沿环路循环多次即可无限制的降低总花费)。
与最短路径问题有关的一个问题是旅行商问题(traveling salesman problem),它要求找出通过所有顶点恰好一次且最终回到源点的最短路径。该问题是NP难的;换言之,与最短路径问题不同,旅行商问题不太可能具有多项式时间算法。
如果有已知信息可用来估计某一点到目标点的距离,则可改用A*算法 ,以减小最短路径的搜索范围。
另外,用于解决最短路径问题的算法被称做“最短路径算法”, 有时被简称作“路径算法”。 最常用的路径算法有:
Dijkstra算法
A*算法
SPFA算法
Bellman-Ford算法
Floyd-Warshall算法
Johnson算法
所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V到V中的每个结点的最短路径。
首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。
⑩ 常见的路由选择算法有哪些
链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。 ——由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。除了这些区别,两种算法在大多数环境下都能很好地运行。