1. 数据挖掘的经典算法
1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2. K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中
4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes)
10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。
关联规则规则定义
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: 尿布与啤酒的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在尿布与啤酒背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
2. 数据挖掘十大算法-
整理里一晚上的数据挖掘算法,其中主要引自wiki和一些论坛。发布到上作为知识共享,但是发现Latex的公式转码到网页的时候出现了丢失,暂时没找到解决方法,有空再回来填坑了。
——编者按
一、 C4.5
C4.5算法是由Ross Quinlan开发的用于产生决策树的算法[1],该算法是对Ross Quinlan之前开发的ID3算法的一个扩展。C4.5算法主要应用于统计分类中,主要是通过分析数据的信息熵建立和修剪决策树。
1.1 决策树的建立规则
在树的每个节点处,C4.5选择最有效地方式对样本集进行分裂,分裂规则是分析所有属性的归一化的信息增益率,选择其中增益率最高的属性作为分裂依据,然后在各个分裂出的子集上进行递归操作。
依据属性A对数据集D进行分类的信息熵可以定义如下:
划分前后的信息增益可以表示为:
那么,归一化的信息增益率可以表示为:
1.2 决策树的修剪方法
C4.5采用的剪枝方法是悲观剪枝法(Pessimistic Error Pruning,PEP),根据样本集计算子树与叶子的经验错误率,在满足替换标准时,使用叶子节点替换子树。
不妨用K表示训练数据集D中分类到某一个叶子节点的样本数,其中其中错误分类的个数为J,由于用估计该节点的样本错误率存在一定的样本误差,因此用表示修正后的样本错误率。那么,对于决策树的一个子树S而言,设其叶子数目为L(S),则子树S的错误分类数为:
设数据集的样本总数为Num,则标准错误可以表示为:
那么,用表示新叶子的错误分类数,则选择使用新叶子节点替换子树S的判据可以表示为:
二、KNN
最近邻域算法(k-nearest neighbor classification, KNN)[2]是一种用于分类和回归的非参数统计方法。KNN算法采用向量空间模型来分类,主要思路是相同类别的案例彼此之间的相似度高,从而可以借由计算未知样本与已知类别案例之间的相似度,来实现分类目标。KNN是一种基于局部近似和的实例的学习方法,是目前最简单的机器学习算法之一。
在分类问题中,KNN的输出是一个分类族群,它的对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若k = 1,则该对象的类别直接由最近的一个节点赋予。在回归问题中,KNN的输出是其周围k个邻居的平均值。无论是分类还是回归,衡量邻居的权重都非常重要,目标是要使较近邻居的权重比较远邻居的权重大,例如,一种常见的加权方案是给每个邻居权重赋值为1/d,其中d是到邻居的距离。这也就自然地导致了KNN算法对于数据的局部结构过于敏感。
三、Naive Bayes
在机器学习的众多分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)[3]。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
在假设各个属性相互独立的条件下,NBC模型的分类公式可以简单地表示为:
但是实际上问题模型的属性之间往往是非独立的,这给NBC模型的分类准确度带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型;而在属性相关性较小时,NBC模型的性能最为良好。
四、CART
CART算法(Classification And Regression Tree)[4]是一种二分递归的决策树,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤:将样本递归划分进行建树过程;用验证数据进行剪枝。
五、K-means
k-平均算法(k-means clustering)[5]是源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。k-means的聚类目标是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类。
5.1 k-means的初始化方法
通常使用的初始化方法有Forgy和随机划分(Random Partition)方法。Forgy方法随机地从数据集中选择k个观测作为初始的均值点;而随机划分方法则随机地为每一观测指定聚类,然后执行“更新”步骤,即计算随机分配的各聚类的图心,作为初始的均值点。Forgy方法易于使得初始均值点散开,随机划分方法则把均值点都放到靠近数据集中心的地方;随机划分方法一般更适用于k-调和均值和模糊k-均值算法。对于期望-最大化(EM)算法和标准k-means算法,Forgy方法作为初始化方法的表现会更好一些。
5.2 k-means的标准算法
k-means的标准算法主要包括分配(Assignment)和更新(Update),在初始化得出k个均值点后,算法将会在这两个步骤中交替执行。
分配(Assignment):将每个观测分配到聚类中,使得组内平方和达到最小。
更新(Update):对于上一步得到的每一个聚类,以聚类中观测值的图心,作为新的均值点。
六、Apriori
Apriori算法[6]是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。Apriori采用自底向上的处理方法,每次只扩展一个对象加入候选集,并且使用数据集对候选集进行检验,当不再产生匹配条件的扩展对象时,算法终止。
Apriori的缺点在于生成候选集的过程中,算法总是尝试扫描整个数据集并尽可能多地添加扩展对象,导致计算效率较低;其本质上采用的是宽度优先的遍历方式,理论上需要遍历次才可以确定任意的最大子集S。
七、SVM
支持向量机(Support Vector Machine, SVM)[7]是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。
除了进行线性分类之外,SVM还可以使用所谓的核技巧有效地进行非线性分类,将其输入隐式映射到高维特征空间中,即支持向量机在高维或无限维空间中构造超平面或超平面集合,用于分类、回归或其他任务。直观来说,分类边界距离最近的训练数据点越远越好,因为这样可以缩小分类器的泛化误差。
八、EM
最大期望算法(Expectation–Maximization Algorithm, EM)[7]是从概率模型中寻找参数最大似然估计的一种算法。其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。
九、PageRank
PageRank算法设计初衷是根据网站的外部链接和内部链接的数量和质量对网站的价值进行衡量。PageRank将每个到网页的链接作为对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。
算法假设上网者将会不断点网页上的链接,当遇到了一个没有任何链接出页面的网页,这时候上网者会随机转到另外的网页开始浏览。设置在任意时刻,用户到达某页面后并继续向后浏览的概率,该数值是根据上网者使用浏览器书签的平均频率估算而得。PageRank值可以表示为:
其中,是被研究的页面集合,N表示页面总数,是链接入页面的集合,是从页面链接处的集合。
PageRank算法的主要缺点是的主要缺点是旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多外链,除非它是某个站点的子站点。
十、AdaBoost
AdaBoost方法[10]是一种迭代算法,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率。每一个训练样本都被赋予一个权重,表明它被某个分类器选入训练集的概率。如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost方法能“聚焦于”那些较难分的样本上。在具体实现上,最初令每个样本的权重都相等,对于第k次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器Ck。然后就根据这个分类器,来提高被它分错的的样本的权重,并降低被正确分类的样本权重。然后,权重更新过的样本集被用于训练下一个分类器Ck[,并且如此迭代地进行下去。
AdaBoost方法的自适应在于:前一个分类器分错的样本会被用来训练下一个分类器。AdaBoost方法对于噪声数据和异常数据很敏感。但在一些问题中,AdaBoost方法相对于大多数其它学习算法而言,不会很容易出现过拟合现象。AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负系数,同样也能提升分类效果。
引用
[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879
[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6
[4] decisiontrees.net Interactive Tutorial
[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002
[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.
[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018
[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977
[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]
[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855
3. 大数据挖掘方法有哪些
数据挖掘是指人们从事先不知道的大量不完整、杂乱、模糊和随机数据中提取潜在隐藏的有用信息和知识的过程。下面说下我们在挖掘大数据的时候,都会用到的几种方法:
方法1.(可视化分析)无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.(数据挖掘算法)如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.(预测分析能力)数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.(语义引擎)由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.(数据质量和主数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。
想要了解更多有关大数据挖掘的信息,可以了解一下CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。真正给企业提出可行性的价值方案和价值业务结果。点击预约免费试听课。
4. 常用的数据挖掘算法有哪几类
常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。
目前已经进入大数据的时代,所以数据挖掘和大数据分析的就业前景非常好,学好大数据分析和数据挖掘可以在各个领域中发挥自己的价值;同时,大数据分析并不是一蹴而就的事情,而是需要你日积月累的数据处理经验,不是会被轻易替代的。一家公司的各项工作,基本上都都用数据体现出来,一位高级的数据分析师职位通常是数据职能架构中领航者,拥有较高的分析和思辨能力,对于业务的理解到位,并且深度知晓公司的管理和商业行为,他可以负责一个子产品或模块级别的项目,带领团队来全面解决问题,把控手下数据分析师的工作质量。
想要了解更多有关数据挖掘算法的信息,可以了解一下CDA数据分析师的课程。课程教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;教你用可落地、易操作的数据科学思维和技术模板构建出优秀模型,只教实用干货,以专精技术能力提升业务效果与效率。点击预约免费试听课。
5. 数据挖掘中的经典算法
大家都知道,数据挖掘中有很多的算法,不同的算法有着不同的优势,它们在数据挖掘领域都产生了极为深远的影响。那么大家知道不知知道数据挖掘中的经典算法都有哪些呢?在这篇文章中我们就给大家介绍数据挖掘中三个经典的算法,希望这篇文章能够更好的帮助大家。
1.K-Means算法
K-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k大于n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。这种算法在数据挖掘中是十分常见的算法。
2.支持向量机
而Support vector machines就是支持向量机,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,这种方法广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。这些优点也就成就了这种算法。
3.C4.5算法
然后我们给大家说一下C4.5算法,C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并对ID3算法进行了改进,这种改进具体体现在四个方面,第一就是在树构造过程中进行剪枝,第二就是能够完成对连续属性的离散化处理,第三就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,第四就是能够对不完整数据进行处理。那么这种算法的优点是什么呢?优点就是产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
相信大家看了这篇文章以后对The k-means algorithm算法、Support vector machines、C4.5算法有了比较是深刻的了解,其实这三种算法那都是十分重要的算法,能够帮助数据挖掘解决更多的问题。大家在学习数据挖掘的时候一定要注意好这些问题。
6. 三种经典的数据挖掘算法
算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。
1.KNN算法
KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。
2.Naive Bayes算法
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。
3.CART算法
CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。
在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。
7. 数据挖掘十大经典算法之朴素贝叶斯
朴素贝叶斯,它是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,**是因为它假设每个输入变量是独立的。**这个假设很硬,现实生活中根本不满足,但是这项技术对于绝大部分的复杂问题仍然非常有效。
贝叶斯原理、贝叶斯分类和朴素贝叶斯这三者之间是有区别的。
贝叶斯原理是最大的概念,它解决了概率论中“逆向概率”的问题,在这个理论基础上,人们设计出了贝叶斯分类器,朴素贝叶斯分类是贝叶斯分类器中的一种,也是最简单,最常用的分类器。朴素贝叶斯之所以朴素是因为它假设属性是相互独立的,因此对实际情况有所约束,**如果属性之间存在关联,分类准确率会降低。**不过好在对于大部分情况下,朴素贝叶斯的分类效果都不错。
朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换而言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。
朴素贝叶斯分类 常用于文本分类 ,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。
1、 需要知道先验概率
先验概率是计算后验概率的基础。在传统的概率理论中,先验概率可以由大量的重复实验所获得的各类样本出现的频率来近似获得,其基础是“大数定律”,这一思想称为“频率主义”。而在称为“贝叶斯主义”的数理统计学派中,他们认为时间是单向的,许多事件的发生不具有可重复性,因此先验概率只能根据对置信度的主观判定来给出,也可以说由“信仰”来确定。
2、按照获得的信息对先验概率进行修正
在没有获得任何信息的时候,如果要进行分类判别,只能依据各类存在的先验概率,将样本划分到先验概率大的一类中。而在获得了更多关于样本特征的信息后,可以依照贝叶斯公式对先验概率进行修正,得到后验概率,提高分类决策的准确性和置信度。
3、分类决策存在错误率
由于贝叶斯分类是在样本取得某特征值时对它属于各类的概率进行推测,并无法获得样本真实的类别归属情况,所以分类决策一定存在错误率,即使错误率很低,分类错误的情况也可能发生。
第一阶段:准备阶段
在这个阶段我们需要确定特征属性,同时明确预测值是什么。并对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。
第二阶段:训练阶段
这个阶段就是生成分类器,主要工作是 计算每个类别在训练样本中的出现频率 及 每个特征属性划分对每个类别的条件概率。
第三阶段:应用阶段
这个阶段是使用分类器对新数据进行分类。
优点:
(1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
(2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
(3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
(2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
(3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
参考:
https://blog.csdn.net/qiu__liao/article/details/90671932
https://blog.csdn.net/u011067360/article/details/24368085
8. 数据挖掘的算法有哪些
数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
具体算法在http://blog.csdn.net/aladdina/article/details/4141177
9. 数据挖掘算法有哪些
以下主要是常见的10种数据挖掘的算法,数据挖掘分为:分类(Logistic回归模型、神经网络、支持向量机等)、关联分析、聚类分析、孤立点分析。每一大类下都有好几种算法,这个具体可以参考数据挖掘概论这本书(英文最新版)