导航:首页 > 源码编译 > 傅里叶成像算法

傅里叶成像算法

发布时间:2023-05-27 04:41:36

‘壹’ 傅里叶变换的原理是什么

傅立叶变换是数字信号处理领域一种很重要的算法,要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。

傅立叶原理表明:任何连续测量的时序或信腊顷棚号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。



傅立叶变换的提出:

用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因乎备在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质轮则:正弦曲线保真度。

一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

‘贰’ 傅里叶变换

虽然是通信专业的学生,但是研究生阶段一直做着与通信不那么相关的图像视频的东西。工作后开始进入无线通信的领域,一边看协议的同时一边恶补已经还给老师的通信基础知识。

OFDM技术是4G和5G中都很重要的一个知识点。我们都知道OFDM是通过FFT来是实现的。那么FFT的基础又是DFT。DFT,FFT是令很多通信专业本科生头疼的课程DSP中的重要内容。从网上闹庆搜刮了一些相关资料,觉得液前握李永乐老师的视频是最清晰明了的。这里记录一下。

1, 变换与反变换

在直角坐标系中有两个向量A和B,单看上去,这两个向量是两个图。我们悔搜也可以用数字的形式来表示这两个图。A对应(2,1),B对应(1,2)。这种使用图和数字两种形式来表示向量的方法就可以看作是一种简单的变换与反变换。见图1.

2. 标准正交基

同样我们还是直角坐标系中的两个向量,ex和ey. 我们知道这两个向量有个特点就是他们之间相互内积为0,而他们对自己做内积则值为1.我们就说ex和ey是标准正交基。见图2.

3.傅里叶级数

我们在大学的高等数学里面学过傅里叶级数。他是法国数学家傅里叶发现的。他发现任何周期函数都可以表示成正弦和余弦的级数和的形式。见图3.那么我们就可以将一个周期函数分解成无数个正弦(余弦)和的形式。我们把这些和在三维中画出来。从不同的角度,看到的东西是不一样的。见图4.从y轴的方向上看,它是一个周期函数,从z轴看过去,它是各个频率分量上的值(值的大小就是振幅的大小),这就是频域表达。再细心看会发现,每个频率上的起始点是不一样的,这就是相位的不同。这里面不仅引入了时域,频域的概念,而且引入了频率,振幅和相位的概念。

4.欧拉公式

5.傅里叶变换

傅里叶级数提出来之后,有好学的同学就要问了,那不是周期的函数我们怎么提取它的频率分量呢?这里我们就会用到标准正交基的概念了。根据正交基的定义,我们知道1,sinwt和coswt也是正交基。那么如果我们把这个非周期函数与正弦函数做积分将会得到什么样的结果呢?结果就会是含有w的项不为零,不含w的项为零。从而就得到了傅里叶变换。

6. DFT

学过DSP课程我们知道,时域和频域上的信号有这样的关系:

那么在实际应用中我没办法准确的表示出连续信号,但是可以准确的表示出离散信号。一对发送端和接收端都喜欢离散的信号,因为能够用数字准确的表示出来。但是我们日常生活中的信号一般并不是周期信号,聪明的人就会想到,我们可以把它离散化,再周期化,不就可以了吗。是的,就这么干。而实际上DFT也就是这么干的。

DFT的变换与反变换公式:这里不做详细推导,网上有很多推导过程。

但是当n很大时,计算量很大,这就引入了FFT。1965年,库利(cooley)和图基(Tukey)首先提出FFT算法.对于N点DFT,仅需(N/2)log2N 次复数乘法运算.例如N=1024=2的10次幂时,需要(1024/2)log2 2的10次幂 =512*10=5120次。5120/1048576=4.88% ,速度提高20倍。

‘叁’ 如何用傅立叶算法测得一正弦波形经过采样后的幅值频率相位

用FFT得到谐波的频谱,里面含有频率,幅度和相位,同时可以通过这个三个而求得其他参数。
FFT是一陪答种DFT的高效算法,称为快速傅悔乱咐立叶变换(fast Fourier transform),它根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。FFT对傅氏碧纯变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。

‘肆’ 傅里叶解析

傅立叶变换
定义
f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做F(ω)的象原函数。 应用

傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
概要介绍
* 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔着《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。
* 傅里叶变换属于谐波分析。
* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
* 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
* 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).
基本性质
线性性质
两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符;
频移性质
若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt;
微分关系
若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 �6�1 iω 。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal[f^{(k)}(x)]存在,则\mathcal[f^{(k)}(x)]=(-i \omega)^ \mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( �6�1 iω)k。
卷积特性
若函数f \left( x\right )及g \left( x\right )都在(-\infty,+\infty)上绝对可积,则卷积函数f*g=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[f*g]=\mathcal[f]\cdot\mathcal[g] 。卷积性质的逆形式为\mathcal^[F(\omega)G(\omega)]=\mathcal^[F(\omega)]*\mathcal^[G(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。
Parseval定理
若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^d\omega 。其中 F(ω) 是 f(x) 的傅里叶变换。
傅里叶变换的不同变种
连续傅里叶变换
主条目:连续傅立叶变换
一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。
f(t) = \mathcal^[F(\omega)] = \frac{\sqrt{2\pi}} \int\limits_{-\infty}^\infty F(\omega) e^{i\omega t}\,d\omega.
上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。
一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。
当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform).
另一个值得注意的性质是,当f(t) 为纯实函数时,F(�6�1ω) = F(ω)*成立.
傅里叶级数
主条目:傅里叶级数
连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:
f(x) = \sum_{n=-\infty}^{\infty} F_n \,e^ ,
其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成:
f(x) = \fraca_0 + \sum_{n=1}^\infty\left[a_n\cos(nx)+b_n\sin(nx)\right],
其中an和bn是实频率分量的振幅。
离散时间傅里叶变换
主条目:离散时间傅里叶变换
离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。

http://ke..com/view/191871.htm

‘伍’ 求傅里叶变化 详细过程 谢谢 又追加悬赏

尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不晌缓得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 着名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称山滑为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 有関傅立叶变换的FPGA实现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。
整体结构
一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。 N=8192点DFT的运算表达式为: 式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。 由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。 图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控逗谨腊制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。
蝶形运算器的实现
基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有: A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? (4) B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5) C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6) D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7) 而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有: A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8) B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9) C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10) D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11) 在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。 以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好?便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。 图2 基2和基4蝶形算法的信号流图
FFT的地址
FFT变换后输出的结果通常为一特定的倒序,因此,几级变换后对地址的控制必须准确无误。 倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下: 基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X?011→ x?110,即输入顺序为3,输出时顺序变为6。 更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如: X?0111→ x?1101。即输入顺序为7,输出时顺序变为13。 在2k/4k/8k的傅立叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。
旋转因子
N点傅立叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为: FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。 根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。 实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅立叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。
存储器的控制
因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。 为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样?FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。 为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。 在2k/4k/8k傅立叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。
硬件的选择
本设计的硬件实现选用的是现场可编程门阵列(FPGA)来满足较高速度的需要。本系统在设计时选用的是ALTERA公司的STRATIX芯片,该芯片中包含有DSP单元,可以完成较为耗费资源的乘法器单元。同时,该器件也包含有大量存储单元,从而可保证旋转因子的精度。 除了一些专用引脚外,FPGA上几乎所有的引脚均可供用户使用,这使得FPGA信号处理方案具有非常好的I/O带宽。大量的I/O引脚和多块存储器可使设计获得优越的并行处理性能。其独立的存储块可作为输入/工作存储区和结果的缓存区,这使得I/O可与FFT计算同时进行。在实现的时间方面,该设计能在4096个时钟周期内完成一个4096点的FFT。若采用10MHz的输入时钟,其变换时间在200μs左右。而由于最新的FPGA使用了MultiTrack互连技术,故可在250MHz以下频率稳定地工作,同时,FFT的实现时间也可以大大缩小。 FFT运算结果的精度与输入数据的位数及运算过程中的位数有关,同时和数据的表示形式也有很大关系。一般来说,浮点方式比定点方式精度高。而在定点计算中,存储器数据的位数越大,运算精度越高,使用的存储单元和逻辑单元也越多。在实际应用中,应根据实际情况折衷选择精度和资源。本设计通过MATLAB进行仿真证明:其实现的变换结果与MATLAB工具箱中的FFT函数相比,信噪比可以达到65db以上,完全可以满足一般工程的实际应用要求。

‘陆’ 快速傅里叶变换fft原理

基础原理讲述:

FFT(快速傅里叶变换):

FFT算法是DFT算法的改良版,而DFT是FFT的离散化。理解FFT,就从傅里叶变换到DFT再到FFT的思路进行推导。笔者也会按照这样的思路进行讲解推导。

傅里叶变换:

傅里叶变换是傅里叶级数的推广,所以在谈傅里叶变换之间,先说一下傅里叶级数。在大学期间学习无穷级数有相关基础的同学可以跳着看。

傅里叶级数:

傅里叶级数是把类似波的函数表示成简单正弦波的方式,更严肃来说的话:对于满足狄利克雷定理的周期函数,其傅里叶级数是由一组简单的振荡函数加权和表示的,表示周期函数为正弦波和余弦波之和。和或谐波(谐波频率是原周期信号频率整数倍的波),可以用谐波分析开确定每一个谐波的相位和幅度。傅里叶级数中就可能有无限谐猛大首波数。对于函数的傅里叶级数的部分但不是所有的谐波求和会产生该函数的近似值,例如:傅里叶级数前几个谐波用于方波就会产生方波的近似值。

方波的傅立叶级数的前四个部分和。随着更多谐波的添加,部分和会收敛到(变得越来越像)

‘柒’ 傅里叶变换的公式表

傅里叶变换的公式表如下:

Fourier transform或Transformée de Fourier有多个中文译名,常见派瞎的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。

‘捌’ 傅里叶变换

离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。但是它的致命缺点是: 计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢, 由此出现羡梁了DFT的快速实现,即下面的快速傅里叶变换FFT。

这里原始信号的三个正弦波的频率分别为,200Hz、400Hz、600Hz,最大频率为600赫兹。根据采样定理,fs至少是600赫兹的2倍,这里选择1400赫兹,即在一秒内选择1400个点。

1400
[-4.18864943e-12+0.j 9.66210986e-05-0.04305756j 3.86508070e-04-0.08611996j
8.69732036e-04-0.12919206j 1.54641157e-03-0.17227871j]

换之后的结果数据长度和原始采样信号是一样的

每一个变换之后的值是一个复数,为a+bj的形式下标为0和 N /2的两个复数的虚数部分为0,下标为i和 N - i 的两个复数共辄,也就是其虚部数值相同、符号相反。再用ifft()从频域转回时域之后,出现了由误差引起的很小的虚部,用np.real()取其实部即可.
 由于一半是另一半的共轭,因此只需要关心一半数据.fft转换后下标为0的春派巧实数表示时域信号中的直流成分(不随时间变化)

振幅谱的纵坐标很大,而且具有对称性
Y=A1+A2 cos(2πω2+φ2)+A3 cos(2πω3+φ3)+A4*cos(2πω4+φ4)

经过FFT之后,得到的“振幅图”中,
第一个峰值(频率位置)的模是A1的N倍,N为采样点,本例中为N=1400,此例中没有,因为信号没有常数项A1
第二个峰值(频率位置)的模是A2的N/2倍,N为采样点,
第三个峰值(频率位置)的模是A3的N/2倍,N为采样点,
第四个峰值(频率位置)的模是A4的N/2倍,N为采样点,

STFT短时傅里叶变换,实际上是对一系列加窗数据做FFT。有的地方也会提到DCT(离散傅里叶变换),而DCT跟FFT的关系就是:FFT是实现DCT的一种快速算法。

FFT有个参数N,表示对多少个点做FFT,如果一帧里面的点的个数小于N就会zero-padding到N的长度。每个点对应一个频率点,某一点n(n从1开始)表示的频率为:

第一个点(n=1,Fn等于0)表示直流信号,最后一个点N的下一个点(实际上这个点是不存在的)表示采样频率Fs。

FFT后我们可以得到N个频点,比如,采样频率为16000,N为1600,那么FFT后就会得到1600个点扒键,FFT得到的1600个值的模可以表示1600个频点对应的振幅。因为FFT具有对称性,当N为偶数时取N/2+1个点,当N为奇数时,取(N+1)/2个点,比如N为512时最后会得到257个值。
scipy.signal.stft(x,fs = 1.0,window =‘hann’,nperseg = 256,noverlap = None,nfft = None,detrend = False,return_oneside = True,boundary =‘zeros’,padded = True,axis = -1 )

阅读全文

与傅里叶成像算法相关的资料

热点内容
php微信第三方登录demo 浏览:534
上海php工具开发源码交付 浏览:788
哪里有求购黄页的源码 浏览:194
商城矿机源码矿场系统 浏览:195
单片机的led灯熄灭程序 浏览:222
洛阳python培训 浏览:702
小键盘命令 浏览:192
单片机c语言返回主程序 浏览:816
dockerpythonweb 浏览:970
程序员算法有多强 浏览:717
pythonworkbook模块 浏览:245
什么app能查医生 浏览:175
轻量级的编程语言 浏览:338
程序员那么可爱生孩子 浏览:432
后缀him3加密文件是什么软件 浏览:984
坚果隐藏app为什么要140版本才能用 浏览:313
淘宝dns服务器地址 浏览:259
领英转型app哪个好用 浏览:943
压缩软件的图标 浏览:97
卖鞋哪个app是真的 浏览:469