导航:首页 > 源码编译 > 图像拼接算法图解

图像拼接算法图解

发布时间:2023-05-27 12:55:17

❶ 长图最多可以拼多少照片

长图最多可以拼9张图片,再多图片也不清晰了,有的软件还需要付费。LongScreen 是一款专注 iPhone 截屏的拼图应用。它的特点是能轻松拼接横向并列拼图,并支持竖向快速拼接长图,选择好图片点击右上角合并就可以开始拼接了。

图像拼接技术技术分类

图像拼接技术主要包括两个关键环节即图像配准和图像融合。对于图像融合部分,由于其耗时不太大,且现有的几种主要方法效果差别也不多,所以总体来说算法上比较成熟。

而图像配准部分是整个图像拼接技术的核心部分,它直接关系到图像拼接算法的成功率和运行速度,因此配准算法的研究是多年来研究的重点。

目前的图像配准算法基本上可以分为两类:基于频域的方法(相位相关方法)和基于时域的方法。

相位相关法最早是由Kuglin和Hines在1975年提出的,并且证明在纯二维平移的情形下,拼接精度可以达到1个像素,多用于航空照片和卫星遥感图像的配准等领域。

该方法对拼接的图像进行快速傅立叶变换,将两幅待配准图像变换到频域,然后通过它们的互功率谱直接计算出两幅图像间的平移矢量,从而实现图像的配准。由于其具有简单而精确的特点,后来成为最有前途的图像配准算法之一。

但是相位相关方法一般需要比较大的重叠比例(通常要求配准图像之间有50%的重叠比例),如果重叠比例较小,则容易造成平移矢量的错误估计,从而较难实现图像的配准。

❷ 使用OpenCV和Python进行图像拼接

么是图像拼接呢?简单来说,对于输入应该有一组图像,输出是合成图像。同时,必须保留图像之间的逻辑流。

首先让我们了解图像拼接的概念。基本上,如果你想捕捉一个大的场景,你的相机只能提供一个特定分辨率的图像(如:640×480),这当然不足以捕捉大的全景。所以,我们可以做的是捕捉整个场景的多个图像,然后把所有的碎片放在一起,形成一个大的图像。这些有序的照片被称为全景。获取多幅图像并将其转换成全景图的整个过程称为图像拼接。

首先,需要安装opencv 3.4.2.16。

接下来我们将导入我们将在Python代码中使用的库:

在我们的教程中,我们将拍摄这张精美的照片,我们会将其分成两张左右两张照片,然后我们会尝试拍摄相同或非常相似的照片。

因此,我将此图像切成两个图像,它们会有某种重叠区域:

在此,我们将列出我们应采取的步骤,以取得最终的结果:

因此,从第一步开始,我们将导入这两个图像并将它们转换为灰度,如果您使用的是大图像,我建议您使用cv2.resize,因为如果您使用较旧的计算机,它可能会非常慢并且需要很长时间。如果要调整图像大小,即调整50%,只需将fx = 1更改为fx = 0.5即可。

我们还需要找出两幅图像中匹配的特征。我们将使用opencv_contrib的SIFT描述符。SIFT (Scale constant Feature Transform)是一种非常强大的OpenCV算法。这些最匹配的特征作为拼接的基础。我们提取两幅图像的关键点和sift描述符如下:

kp1和kp2是关键点,des1和des2是图像的描述符。如果我们用特征来画这幅图,它会是这样的:

左边的图像显示实际图像。右侧的图像使用SIFT检测到的特征进行注释:

一旦你有了两个图像的描述符和关键点,我们就会发现它们之间的对应关系。我们为什么要这么做?为了将任意两个图像连接成一个更大的图像,我们必须找到重叠的点。这些重叠的点会让我们根据第一幅图像了解第二幅图像的方向。根据这些公共点,我们就能知道第二幅图像是大是小还是旋转后重叠,或者缩小/放大后再fitted。所有此类信息的产生是通过建立对应关系来实现的。这个过程称为registration。

对于匹配图像,可以使用opencv提供的FLANN或BFMatcher方法。我会写两个例子证明我们会得到相同的结果。两个示例都匹配两张照片中更相似的特征。当我们设置参数k = 2时,这样我们就要求knnMatcher为每个描述符给出2个最佳匹配。“matches”是列表的列表,其中每个子列表由“k”个对象组成。以下是Python代码:

FLANN匹配代码:

BFMatcher匹配代码:

通常在图像中,图像的许多地方可能存在许多特征。所以我们过滤掉所有的匹配来得到最好的。因此我们使用上面得到的前2个匹配项进行比值检验。如果下面定义的比值大于指定的比值,则考虑匹配。

现在我们定义在图像上绘制线条的参数,并给出输出以查看当我们在图像上找到所有匹配时的样子:

这是输出的匹配图像:

这部分完整Python代码:

因此,一旦我们获得了图像之间的最佳匹配,我们的下一步就是计算单应矩阵。如前所述,单应矩阵将与最佳匹配点一起使用,以估计两个图像内的相对方向变换。

在OpenCV中估计单应性是一项简单的任务,只需一行代码:

在开始编码拼接算法之前,我们需要交换图像输入。所以img_现在会取右图像img会取左图像。

那么让我们进入拼接编码:

因此,首先,我们将最小匹配条件count设置为10(由MIN_MATCH_COUNT定义),并且只有在匹配良好的匹配超出所需匹配时才进行拼接。否则,只需显示一条消息,说明匹配不够。

因此,在if语句中,我们将关键点(从匹配列表)转换为findHomography()函数的参数。

只需在这段代码中讨论cv2.imshow(“original_image_overlapping.jpg”,img2),我们就会显示我们收到的图像重叠区域:

因此,一旦我们建立了单应性,我们需要扭曲视角,我们将以下单应矩阵应用于图像:

所以我们使用如下:

在上面两行Python代码中,我们从两个给定的图像中获取重叠区域。然后在“dst”中我们只接收到没有重叠的图像的右侧,因此在第二行代码中我们将左侧图像放置到最终图像。所以在这一点上我们完全拼接了图像:

剩下的就是去除图像的黑色,所以我们将编写以下代码来从所有图像边框中删除黑边:

这是我们调用修剪边界的最终定义函数,同时我们在屏幕上显示该图像。如果您愿意,也可以将其写入磁盘:

使用上面的Python代码,我们将首先收到原始图片:

这是完整的最终代码:

在本教程中,我们学习了如何使用OpenCV执行图像拼接和全景构造,并编写了最终的图像拼接代码。

我们的图像拼接算法需要四个主要步骤:检测关键点和提取局部不变描述符; 获得图像之间的匹配描述符; 应用RANSAC估计单应矩阵; 使用单应矩阵应用warping transformation。

当仅为两个图像构建全景图时,该算法在实践中工作良好。

❸ 急求!图像拼接算法代码

算法描述

procere ImageMatching

{

输入FirstImage;

输入SecondImage;

//获得两幅图象的大小

Height1=GetImageHeight(FirstImage);

Height2=GetImageHeight(SecondImage);

Width1=GetImageWidth(FirstImage);

Width2=GetImageWidth(SecondImage);

// 从第二幅图象取网格匹配模板

SecondImageGrid = GetSecondImageGrid(SecondImage);

// 粗略匹配,网格在第一幅图象中先从左向右移动,再从下到上移动,每次移动一个网格间距,Step_Width 或Step_Height,当网格移出重叠区域后结束

y=Heitht1-GridHeight;

MinValue = MaxInteger;

While ( y<Height1-OverlapNumber)//当网格移出重叠部分后结束

{

x=Grid_Width/2; //当网格位于第一幅图象的最左边时,A点的横坐标。

While ( x<(Width1-Grid_Width/2) )

{

FirstImageGrid=GetImgaeGrid(FirstImgaeGrid, x, y);

differ=CaculateDiff(FirstImgaeGrid, SecondImageGrid);//计算象素值差的平

//方和

if (differ<MinValue)

{

BestMatch_x=x;

BestMatch_y=y;

MinValue = differ;

}

x= x+Step_width;

}

y=y-Step_Height;

}

//精确匹配

Step_Width= Step_Width/2;

Step_Height= Step_Height/2;

While ( Step_Height>0 & Step_Width>0)//当水平步长和垂直步长均减为零时结束

{

if(Step_Height==0)//当仅有垂直步长减为零时,将其置为1

Step_Height=1;

If(Step_Width==0) //当仅有水平步长减为零时,将其置为1

Step_Width=1;

temp_x = BestMatch_x;

temp_y = BestMatch_y;

for ( i= -1; i<1; i++)

for( j= -1; j<1; j++)

{

if ((i=0&j!=0)|(i!=0&j=0))

{

FirstImageGrid=GetImgaeGrid(FirstImgaeGrid,

temp_x+i*Step_Width, temp_y +j*Step_Height);

differ=CaculateDiff(FirstImgaeGrid, SecondImageGrid);

if (differ<MinValue)

{

BestMatch_x=x;

BestMatch_y=y;

MinValue = differ;

}

}

}

Step_Height = Step_Height /2;

Step_Width = Step_Width/2;

}

}
不懂的可以问我,相互交流

阅读全文

与图像拼接算法图解相关的资料

热点内容
程序员装机必备的软件 浏览:9
php微信第三方登录demo 浏览:536
上海php工具开发源码交付 浏览:790
哪里有求购黄页的源码 浏览:194
商城矿机源码矿场系统 浏览:195
单片机的led灯熄灭程序 浏览:222
洛阳python培训 浏览:702
小键盘命令 浏览:192
单片机c语言返回主程序 浏览:816
dockerpythonweb 浏览:970
程序员算法有多强 浏览:717
pythonworkbook模块 浏览:245
什么app能查医生 浏览:175
轻量级的编程语言 浏览:338
程序员那么可爱生孩子 浏览:432
后缀him3加密文件是什么软件 浏览:984
坚果隐藏app为什么要140版本才能用 浏览:313
淘宝dns服务器地址 浏览:259
领英转型app哪个好用 浏览:943
压缩软件的图标 浏览:97