㈠ iOS开发面试拿offer攻略之数据结构与算法篇附加安全加密
集合结构 线性结构 树形结构 图形结构
1.1、集合结构 说白了就是一个集合,就是一个圆圈中有很多个元素,元素与元素之间没有任何关系 这个很简单
1.2、线性结构 说白了就是一个条线上站着很多个人。 这条线不一定是直的。也可以是弯的。也可以是值的 相当于一条线被分成了好几段的样子 (发挥你的想象力)。 线性结构是一对一的关系
1.3、树形结构 说白了 做开发的肯定或多或少的知道 xml 解析 树形结构跟他非常类似。也可以想象成一个金字塔。树形结构是一对多的关系
1.4、图形结构 这个就比较复杂了。他呢 无穷。无边 无向(没有方向)图形机构 你可以理解为多对多 类似于我们人的交集关系
数据结构的存储
数据结构的存储一般常用的有两种 顺序存储结构 和 链式存储结构
2.1 顺序存储结构
发挥想象力啊。 举个列子。数组。1-2-3-4-5-6-7-8-9-10。这个就是一个顺序存储结构 ,存储是按顺序的 举例说明啊。 栈,做开发的都熟悉。栈是先进后出 ,后进先出的形式 对不对 ?
他的你可以这样理解, hello world 在栈里面从栈底到栈顶的逻辑依次为 h-e-l-l-o-w-o-r-l-d 这就是顺序存储,再比如队列 ,队列是先进先出的对吧,从头到尾 h-e-l-l-o-w-o-r-l-d 就是这样排对的
2.2 链式存储结构
再次发挥想象力 这个稍微复杂一点 这个图片我一直弄好 ,回头找美工问问,再贴上 例如 还是一个数组 1-2-3-4-5-6-7-8-9-10 链式存储就不一样了 1(地址)-2(地址)-7(地址)-4(地址)-5(地址)-9(地址)-8(地址)-3(地址)-6(地址)-10(地址)。每个数字后面跟着一个地址 而且存储形式不再是顺序 ,也就说顺序乱了,1(地址) 1 后面跟着的这个地址指向的是 2,2 后面的地址指向的是 3,3 后面的地址指向是谁你应该清楚了吧。他执行的时候是 1(地址)-2(地址)-3(地址)-4(地址)-5(地址)-6(地址)-7(地址)-8(地址)-9(地址)-10(地址),但是存储的时候就是完全随机的。明白了?
单向链表双向链表循环链表
还是举例子。理解最重要。不要去死记硬背 哪些什么。定义啊。逻辑啊。理解才是最重要滴
3.1 单向链表
A->B->C->D->E->F->G->H . 这就是单向链表 H 是头 A 是尾 像一个只有一个头的火车一样 只能一个头拉着跑
3.2 双向链表
数组和链表区别:
数组:数组元素在内存上连续存放,可以通过下标查找元素;插入、删除需要移动大量元素,比较适用元素很少变化的情况
链表:链表中的元素在内存中不是顺序存储的,查找慢,插入、删除只需要对元素指针重新赋值,效率高
3.3 循环链表
循环链表是与单向链表一样,是一种链式的存储结构,所不同的是,循环链表的最后一个结点的指针是指向该循环链表的第一个结点或者表头结点,从而构成一个环形的链。发挥想象力 A->B->C->D->E->F->G->H->A . 绕成一个圈。就像蛇吃自己的这就是循环 不需要去死记硬背哪些理论知识。
二叉树/平衡二叉树
4.1 什么是二叉树
树形结构下,两个节点以内 都称之为二叉树 不存在大于 2 的节点 分为左子树 右子树 有顺序 不能颠倒 ,懵逼了吧,你肯定会想这是什么玩意,什么左子树右子树 ,都什么跟什么鬼? 现在我以普通话再讲一遍,你把二叉树看成一个人 ,人的头呢就是树的根 ,左子树就是左手,右子树就是右手,左右手可以都没有(残疾嘛,声明一下,绝非歧视残疾朋友,勿怪,勿怪就是举个例子, I am very sorry ) , 左右手呢可以有一个,就是不能颠倒。这样讲应该明白了吧
二叉树有五种表现形式
1.空的树(没有节点)可以理解为什么都没 像空气一样
2.只有根节点。 (理解一个人只有一个头 其他的什么都没,说的有点恐怖)
3.只有左子树 (一个头 一个左手 感觉越来越写不下去了)
4.只有右子树
5.左右子树都有
二叉树可以转换成森林 树也可以转换成二叉树。这里就不介绍了 你做项目绝对用不到数据结构大致介绍这么多吧。理解为主, 别死记,死记没什么用
1、不用中间变量,用两种方法交换 A 和 B 的值
2、****求最大公约数
3、模拟栈操作
栈是一种数据结构,特点:先进后出 -
练习:使用全局变量模拟栈的操作
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
//保护全局变量:在全局变量前加 static 后,这个全局变量就只能在本文件中使用 static int data[1024] ;//栈最多能保存 1024 个数据
static int count = 0 ;//目前已经放了多少个数(相当于栈顶位置)
4、排序算法
选择排序、冒泡排序、插入排序三种排序算法可以总结为如下:
都将数组分为已排序部分和未排序部分。
1.选择排序将已排序部分定义在左端,然后选择未排序部分的最小元素和未排序部分的第一个元素交换。
2.冒泡排序将已排序部分定义在右端,在遍历未排序部分的过程执行交换,将最大元素交换到最右端。
3.插入排序将已排序部分定义在左端,将未排序部分元的第一个元素插入到已排序部分合适的位置。
4.1、选择排序
【选择排序】:最值出现在起始端
第 1 趟:在 n 个数中找到最小(大)数与第一个数交换位置
第 2 趟:在剩下 n-1 个数中找到最小(大)数与第二个数交换位置
重复这样的操作...依次与第三个、第四个...数交换位置
第 n-1 趟,最终可实现数据的升序(降序)排列。
4.2、冒泡排序
【冒泡排序】:相邻元素两两比较,比较完一趟,最值出现在末尾
第 1 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 n 个元素位置
第 2 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 n-1 个元素位置
…… ……
第 n-1 趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第 2 个元素位置
5、折半查找(二分查找)
折半查找:优化查找时间(不用遍历全部数据) 折半查找的原理:
1.数组必须是有序的
2.必须已知 min 和 max (知道范围)
// 已知一个有序数组, 和一个 key , 要求从数组中找到 key 对应的索引位置
字符串反转
给定字符串 " hello,world ",实现将其反转。输出结果: dlrow , olleh
序数组合并
将有序数组 {1,4,6,7,9} 和 {2,3,5,6,8,9,10,11,12} 合并为{1,2,3,4,5,6,6,7,8,9,9,10,11,12}
HASH 算法
哈希表
例:给定值是字母 a ,对应 ASCII 码值是 97,数组索引下标为 97。
这里的 ASCII 码,就算是一种哈希函数,存储和查找都通过该函数,有效地提高查找效率。
在一个字符串中找到第一个只出现一次的字符。如输入" abaccdeff ",输出' b '字符( char )是一个长度为 8 的数据类型,因此总共有 256 种可能。每个字母根据其 ASCII 码值作为数组下标对应数组种的一个数字。数组中存储的是每个字符出现的次数。
查找两个子视图的共同父视图
思路:分别记录两个子视图的所有父视图并保存到数组中,然后倒序寻找,直至找到第一个不一样的父视图。
求无序数组中的中位数
中位数:当数组个数 n 为奇数时,为 (n + 1)/2 ,即是最中间那个数字;当 n 为偶数时,为 (n/2 + (n/2 + 1))/2 , 即是中间两个数字的平均数。
首先要先去了解一些几种排序算法: iOS 排序算法
思路:
1.排序算法+中位数
首先用冒泡排序、快速排序、堆排序、希尔排序等排序算法将所给数组排序,然后取出其中位数即可。
2.利用快排思想
1、简述 SSL 加密的过程用了哪些加密方法,为何这么作?
SSL 加密的过程之前有些过,此处不再赘述。
SSL 加密,在过程中实际使用了 对称加密 和 非对称加密 的结合。
主要的考虑是先使用 非对称加密 进行连接,这样做是为了避免中间人攻击秘钥被劫持,但是 非对称加密的效率比较低。所以一旦建立了安全的连接之后,就可以使用轻量的 对称加密。
2、RSA 非对称加密
对称加密[算法]在加密和解密时使用的是同一个秘钥;而[非对称加密算法]需要两个[密钥]来进行加密和解密,这两个秘钥是[公开密钥]( public key ,简称公钥)和私有密钥( private key ,简称私钥)。
RSA 加密
与对称加密[算法]不同,[非对称加密算法]需要两个[密钥]:[公开密钥]( publickey )和私有密钥( privatekey )。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的[密钥],所以这种算法叫作[非对称加密算法]。
RSA**** 加密原理
RSA 是常用的加密模式,其加密原理可用以下的例子进行简要的论述。
随机取两个质数
以上就是本篇所整理的,感谢观看!
㈡ 面试经典数据结构和算法汇总
如果说数据结构是骨架,那么算法就是灵魂。没了骨架,灵魂没有实体寄托;没了灵魂,骨架也是个空壳。两者相辅相成,缺一不可,在开发中起到了砥柱中流的作用。
现在我对各种数据结构和算法做一总结,对比一下它们的效率
1.数据结构篇
1. 如果让你手写个栈和队列,你还会写吗?
2. 开发了那么多项目,你能自己手写个健壮的链表出来吗?
3. 下次面试若再被问到二叉树,希望你能对答如流!
4. 面试还在被红-黑树虐?看完这篇轻松搞定面试官 !
2.排序算法篇
1. 几个经典的基础排序算法,你还记得吗?
2. 手把手教你学会希尔排序,很简单!
3. 快速排序算法到底有多快?
4. 五分钟教你学会归并排序
5. 简单说下二叉树排序
6. 学会堆排序只需要几分钟
7. 图,这个玩意儿竟然还可以用来排序!
掌握了这些经典的数据结构和算法,面试啥的基本上没什么问题了,特别是对于那些应届生来说。接下来再总结一下不同数据结构和算法的效率问题,做一下对比,这也是面试官经常问的问题。
数据结构常用操作效率对比:
常用排序算法效率的对比:
关于经典的数据结构和算法,就总结到这,本文建议收藏,利用等公交、各种排队之时提升自己。这世上天才很少,懒蛋却很多,你若对得起时间,时间便对得起你。
㈢ 面试准备之【数据结构】1——图
共有:邻接表,邻接矩阵
有向图独有:十字链表,边集数组
无向图独有:邻接多重表
一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵是一个nxn的方阵,定义为:Arc[i][j]=1,若<vi,vj>∈E或<vi,vj>∈E,反之等于0。
可以看出,无向图的邻接矩阵是对称矩阵,要想知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行(或第i列)的元素之和。
在有向图的邻接矩阵中,某个顶点的出(入)度是这个顶点vi在邻接矩阵中第i 行(列)的元素之和;
我们发现,当图中的边数相对于顶点较少时,邻接矩阵是对存储空间的极大浪费。我们可以考虑对边或弧使用链式存储的方式来避免空间浪费的问题。回忆树结构的孩子表示法,将结点存入数组,并对结点的孩子进行链式存储,不管有多少孩子,也不会存在空间浪费问题。
邻接表的创建过程如下:
1) 图中顶点用一个一维数组存储,当然也可以用单链表来存储,不过用数组可以较容易的读取顶点信息,更加方便。另外,对于顶点数组中,每个数据元素还需要存储指向第一个邻接点的指针,以便于查找该顶点的边信息。
2) 图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以用单链表存储,无向图称为顶点vi的边表,有向图则称为以vi为弧尾的出边表。
从图中我们知道,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息。
firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。
边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指
向边表中下一个结点的指针,比如v1顶点与v0、v2互为邻接点,则在v1的边表中,adjvex分别为v0的0和v2的2.
如果想知道某个顶点的度,就去查找这个顶点的边表中结点的各数。
若要判断顶点vi和vj是否存在边,只需要测试顶点vi的边表adjvex中是否存在结点vj的下标就行了。
若求顶点的所有邻接点,其实就是对此顶点的边表进行遍历,得到的adjvex域对应的顶点就是邻接点。
有向图的邻接表中顶点vi的边表是指以vi 为弧尾 的弧来存储的,这样很容易就可以得到每个顶点的出度。
有时为了便于确定顶点的入度或以顶点为弧头的弧,可以建立一个有向图的逆邻接表,即对每个顶点vi都建立
一个链接为vi为弧头的表。如下图所示:
此时我们很容易就可以算出某个顶点的入度或出度是多少,判断两顶点是否存在弧也很容易实现。
对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可
对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才能知道。反之,逆邻接表解决了入度
却不了解出度的情况。有没有可能把邻接表和逆邻接表结合起来呢?
答案是肯定的,就是把它们整合在一起。这种存储有向图的方法是:十字链表(Orthogonal List).
我们重新定义顶点表结点结构为:
| data | firstin | firstout |
其中firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。
重新定义的 边表 结点结构如下表:
| tailvex | headvex | headlink | taillink |
其中tailvex是指弧起点在顶点表的下标,headvex是指弧终点在顶点表中的下标,headlink是指入边表指针域,指向终点(弧头)相同的
下一条边,taillink是指出边表指针域,指向起点(弧尾)相同的下一条边。如果是带权值的网,还可以再增加一个weight域来存储权值。
如下图表示的十字链表:
顶点表依然是存入一个一维数组{v0,v1,v2,v3},以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以v0边表结点的headvex=3,
而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所以headlink和taillink都是空。
这里虚线箭头的含义,其实就是逆邻接表的表示。对于v0来说,它有两条入边,分别来自顶点v1和v2。因此v0的firstin指向顶点v1的边表
结点中headvex为0的结点,虚线(1),接着由入边结点的headlink指向下一个入边顶点v2,虚线(2)。
对于顶点v1,它有一个入边顶点v2,2个出边顶点v0和v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,虚线(3).
十字链表的好处就是因为把邻接表和逆邻接表整合在了一起,这样既容易找到以vi为尾的弧,也容易找到以vi为头的弧,因而容易求得
顶点的出度和入度。除了结构复杂一点外,其实创建图算法的时间复杂度和邻接表是相同的,因此很好的应用在有向图中。
十字链表主要是针对有向图的存储结构进行了优化,那么对于无向图的邻接表,有没有问题呢?如果我们在无向图的应用中,关注的重点是顶点,那么邻接表是不错的选择,但如果我们更关注边的操作,比如对已访问过的边做标记,删除某一条边等操作,那就意味着需要找到这条边的两个边表结点进行操作。如下图,若要删除(v0,v2)这条边,需要对邻接表结构中右边表的两个结点进行删除,显然这是比较繁琐的。
因此,我们也仿照十字链表的方式,对边表结点的结构进行一些改造,重新定义的边表结点结构如下表:
| ivex | ilink | jvex | jlink |
其中ivex和jvex是指某条边依附的两个顶点在顶点表中的下标。ilink指向依附顶点ivex的下一条边,jlink指向依附顶点jvex的下一条边。
这就是邻接多重表结构。如上图有4个顶点和5条边,先将边表结点画出来。由于是无向图,所以ivex,jvex正反过来都可以,为了绘图
方便,都将ivex值设置的与一旁的顶点下标相同。
下面开始连线,首先连线的(1)(2)(3)(4)是将顶点的firstedge指向一条边,顶点下标要与ivex的值相同。接着,由于顶点v0的(v0,v1)边的
邻边有(v0,v3)和(v0,v2)。因此(5)(6)的连线就是满足指向下一条依附于顶点v0的边的目标,注意ilink指向的结点的jvex(ivex)一定要与它本身
的jvex(ivex)的值相同。同理,连线(7)就是指(v1,v0)这条边,它是相当于顶点v1指向(v1,v2)边后的下一条。v2有三条边依附,所以(3)之后就有
了(8)(9)。连线(10)就是顶点v3在连线(4)之后的下一条边。左图一共有5条边,所以右图有10条连线,完全符合预期。
邻接多重表与邻接表的差别, 仅仅是在于同一条边在邻接表中用两个边表结点表示,而在邻接多重表中只有一个结点 。这样对边的操作就方便
多了,若要删除左图的(v0,v2)这条边,只需要将右图的(6)(9)的链接指向改为^即可。
---- 边集数组是由两个一维数组构成。一个是存储顶点的信息;另一个是存储边的信息,这个边数组每个数据元素由一条边的起点下标(begin)、终点下标(end)和权(weight)组成。
如上图所示,边集数组关注的是边的集合,在边集数组中要查找一个顶点的度需要扫描整个边数组,效率并不高。因此它更适合对边依次
进行处理的操作,而不适合对顶点相关的操作
路径长度:路径上各活动持续时间的总和(即路径上所有权之和)。
完成工程的最短时间:从工程开始点(源点)到完成点(汇点)的最长路径称为完成工程的最短时间。
关键路径:路径长度最长的路径称为关键路径。
二分图是一类特殊的图,又称为双分图、二部图、偶图。二分图的顶点可以分成两个互斥的独立集 U 和 V 的图,使得所有边都是连结一个 U 中的点和一个 V 中的点。顶点集 U、V 被称为是图的两个部分。等价的,二分图可以被定义成图中所有的环都有偶数个顶点。可以将 U 和 V 当做一个着色:U 中所有顶点为蓝色,V 中所有顶点着绿色,每条边的两个端点的颜色不同,符合图着色问题的要求。相反的,非二分图无法被二着色
完全二分图 是一种特殊的二分图,可以把图中的顶点分成两个集合,使得第一个集合中的所有顶点都与第二个集合中的所有顶点相连。
欧拉图是指通过图(无向图或有向图)中所有边且每边仅通过一次通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(Euler Graph),具有欧拉通路而无欧拉回路的图称为半欧拉图。欧拉证明了如下定理: 一个非空连通图是欧拉图当且仅当它的每个顶点的度数都是偶数。 由此可得如下结论:一个连通图有欧拉迹当它至多有两个度数是奇数的顶点。
AOE网Activity On Edge Network:在现代化管理中,人们常用有向图来描述和分析一项工程的计划和实施过程,一个工程常被分为多个小的子工程,这些子工程被称为活动(Activity),在带权有向图中若以顶点表示事件,有向边表示活动,边上的权值表示该活动持续的时间,这样的图简称为AOE网。
图的存储结构-邻接助阵和邻接表 https://blog.csdn.net/dongyanxia1000/article/details/53582186
图的存储结构-十字链表和邻接多重表 https://blog.csdn.net/dongyanxia1000/article/details/53584496
㈣ 大厂数据分析面试题,大数据结构化面试
作为程序员,你认为代码只要实现功能就可以了吗?
其实,工作2~3年后,你会陪蠢发现随着工作的深入,工作中遇到的问题会变大,处理的数据量也会变大。
一开始,我可能会耐心加班,等机器处理好了再回家,但最后,处理完这些数据通常是在深夜。
面对这样的问题,其实可以用数据结构解决。 仔细整理开发中遇到的问题,会发现很多工作中的问题,用简单的逻辑就能解决。
举个例子,你很熟悉。 如何实时统计99%的业务接口响应时间?
您可能会首先想到,每次查询时,都会按照从小到大的顺序对所有响应时间进行排序。 如果总共有1200个数据,第1188个数据将有99%的响应时间。
很明显,每次用这种方法查询都要排序,效率非常低。
但是,如果知道“堆”数据结构,两个堆就可以非常有效地解决这个问题。
因此,数据结构是提高我们程序员工作效率的利器!
另外,已经工作了2到3年的你,可能想跳槽进入大工厂。
但是,当你去面试时,你经常会碰到数据结构和算法的主题。
目前,数据结构和算法是许多知名企业面试的必考问题。
国内外各大互联网公司在面试过程中,都多少听说了一些有关数据结构和算法的主题。
而且,规模越大的公司,越重视数据结构和算法。
例如,2019年6月,阿里面试中涉及的数据结构主题:
2019年华为面试涉及的数据结构主题:
目前,许多中小企业的面试问题都涉瞎盯及数据结构知识。
其实,你会发现,即使是大小公司,为了筛选更优秀的人磨乱和才,面试问题的难度也会越来越大。
因此,数据结构是进入大厂的重要门槛。
总之,如果你想提高工作效率,进入更大的公司,数据结构和算法是你必须跨越的一道坎。
从易传传媒、亚信、奥鹏教育、程序员到架构师再到技术经理樊延欣老师,前后六年通过各种工作方式打好数据结构基础,在过程中梳理了许多心得,进行了深入思考。
和樊延欣老师一起,死战数据结构,跳过代码陷阱,尽快完成数据结构通关,有机会升职更好。
扫描堆场上的二维码,点击组,立即抢购
原价69元,限时优惠49元
老师怎么解释这门课?#
老师介绍枯燥抽象的结构规则用详细的方法映射到实际项目中。 然后尽量脱离复杂的数学基础,在许多常见的应用场合映射相关理论,降低学习者的理解门槛,使其零基础也能学习。
同时,该课程至少涵盖了50%常见互联网公司中数据结构方面的面试问题纲领,序列和栈是基础性主题,树是更高级的主题,可以理解和把握,发挥面试信心,更上一层楼
#课程介绍#
#我能得到什么? #
1、提高编程效率和质量
熟悉数据结构原理,复杂的项目无需为需求实现原理而烦恼。
2、优化能力提升
随着了解的加深,能够发现与工作中数据结构特性相违背的代码,并具有优化修改的能力。
3、提高面试成功率
学习50%以上互联网公司数据结构的面试问题纲领,提高面试合格率。
#使用者群组#
1、开发业务系统2年,有相关项目经验,不断重复制作业务车轮希望提高的程序员。
有2、3~5年开发经验,但基础不牢固,想改变体系结构的程序员。
3、基础扎实,需要大量用例和思考才能巩固基础的优秀毕业生/在校生。
#新课初优惠#
限时49元
(成本69 )。
每百人加价十元
第26节课,平均每课2元,持续一个月,改变报关大厂面试机会
享受七折的折扣
自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/