㈠ 什么是数据结构和算法
数据结构,Data_Structure,其中D是数据元素的集合,R是该集合中所有元素之间的关系的有限集合。数据结构则是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
数据结构是计算机专业学生在大学期间都会学习的一门课程,但是由于课程偏理论,缺乏实际操作的学习体验,而让大家产生了一种“数据结构不重要,我只要学习了Java/C语言/Python同样能敲代码”的错觉,但其实它是一门集技术性、理论性和实践性于一体的课程。
算法是某一系列运算步骤,它表达解决某一类计算问题的一般方法,对这类方法的任何一个输入,它可以按步骤一步一步计算,最终产生一个输出。
小码哥的李明杰也说过所有的计算问题,都离不开要计算的对象或者要处理的信息,如何高效的把它们组织起来,就是数据结构关心的问题,所以算法是离不开数据结构的,这就是数据与算法。
㈡ 计算机考研:数据结构常用算法解析(8)
第九章 查找
查找分成静态查找和动态查找,静态查找只是找,返回查找位置。而动态查找则不同,若查找成功,返回位置,若查找不成功,则要返回新记录的插入位置。也就是说,静态查找不改变查找表,而动态查找则会有插入操作,会改变查找表的。
不同的查找所采用的存储结构也不同,静态查找采用顺序表,而动码迟态查找由于经常变动,所以用二叉排序树,二叉平衡树、B-和B+。
静态查找有,顺序查找,折半查找,分块查找(索引顺序查找)
顺序查找(Sequential Search)是最简单的一种查找方法。
算法思路
设给定值为k,在表(R1 R2……Rn)中,从Rn即最后一个元素开始,查找key=k的记录。若存在一个记录Ri(l≤i≤n)的key为k,则查找成功,返回记录序号i;否则,查找失败,返回0。
算法描述
int sqsearch(sqlist r,keytype k) //对表r顺序查找的算法//
{ int i;
r.data[0].key=k; //k存入监视哨//
i=r.len; //取表长//
while(r.data[i].key!=k)
i--; //顺序查找//
return(i);
}
算法用了一点技巧:先将k存入监视哨,若对某个i(≠0)有r.data[i].key=k,则查找成功,返回i;若i从n递减到1都无记录的key为k,i再减1为0时,必有r.data[0].key=k,说明查找失败,返回i=0。
平均查找成功长度ASL= ,而查找失败时,查找次数等于n+l。
折半查找算法及分析
当记录的key按关系≤或≥有序时,不管是递增的还是递减的,只要有序且采用顺序存储。
算法描述
int Binsearch(sqlist r,keytype k) //对有序表r折半查找的算法//
{ int low,high,mid;
low=1;high=r.len; //上下界初值//
while(low<=high) //表空间存在时//
{ mid=(low+high)/2; //求当前mid//
if (k==r.data[mid].key)
return(mid); //查找成功,返回mid//
if (k
high=mid-1; //调整上界,向左部查找//
else
low=mid+1; //调整下界,向右部查找//
}
return(0); //low>high,查找失败//
}
判定树:用来描述二分查找过程的二叉树。n个结点的判定树的深度和n个结点的完全二叉树深度相同= 。但判断树不一定是完全二叉树,但他的叶子结点所在层次之差不超过1。所以,折半查找在查找成功时和给定值进行比笑困较的关键字个数至多为
ASL=
分块查找算法及分析
分块查找(Blocking Search),又称索引顺序查找(Indexed Sequential Search),是顺序查找方法的一种改进,目的也是为了提高查找效率。
1.分块
设记录表长为n,将表的n个记录分成b= 个块,每块s个记录(最后一块记录数可以少于s个),即:
且表分块有序,即第i(1≤i≤b-1)块所有记录的key小于第i+1块中记录的key,但块内记录可以无序。
2.建立索引
每块对应一索引项:
KeymaxLink
其中Keymax为该块内记录的最大key;link为该块第一记录的序号(或指针)。
3.算法思路 分块索碰模念引查找分两步进行:
(1)由索引表确定待查找记录所在的块;(可以折半查找也可顺序因为索引表有序)
(2)在块内顺序查找。(只能用顺序查找,块内是无序的)
考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
㈢ 一文带你认识30个重要的数据结构和算法
数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。
它们是做什么用的?
想象一下有一排剧院椅。每把椅子都分配了一个位置(从左到右),因此每个观众都会从他将要坐的椅子上分配一个号码。这是一个数组。将问题扩展到整个剧院(椅子的行和列),您将拥有一个二维数组(矩阵)。
特性
链表是线性数据结构,就像数组一样。链表和数组的主要区别在于链表的元素不存储在连续的内存位置。它由节点组成——实体存储当前元素的值和下一个元素的地址引用。这样,元素通过指针链接。
它们是做什么用的?
链表的一个相关应用是浏览器的上一页和下一页的实现。双链表是存储用户搜索显示的页面的完美数据结构。
特性
堆栈是一种抽象数据类型,它形式化了受限访问集合的概念。该限制遵循 LIFO(后进先出)规则。因此,添加到堆栈中的最后一个元素是您从中删除的第一个元素。
堆栈可以使用数组或链表来实现。
它们是做什么用的?
现实生活中最常见的例子是在食堂中将盘子叠放在一起。位于顶部的板首先被移除。放置在最底部的盘子是在堆栈中保留时间最长的盘子。
堆栈最有用的一种情况是您需要获取给定元素的相反顺序。只需将它们全部推入堆栈,然后弹出它们。
另一个有趣的应用是有效括号问题。给定一串括号,您可以使用堆栈检查它们是否匹配。
特性
队列是受限访问集合中的另一种数据类型,就像前面讨论的堆栈一样。主要区别在于队列是按照FIFO(先进先出)模型组织的:队列中第一个插入的元素是第一个被移除的元素。队列可以使用固定长度的数组、循环数组或链表来实现。
它们是做什么用的?
这种抽象数据类型 (ADT) 的最佳用途当然是模拟现实生活中的队列。例如,在呼叫中心应用程序中,队列用于保存等待从顾问那里获得帮助的客户——这些客户应该按照他们呼叫的顺序获得帮助。
一种特殊且非常重要的队列类型是优先级队列。元素根据与它们关联的“优先级”被引入队列:具有最高优先级的元素首先被引入队列。这个 ADT 在许多图算法(Dijkstra 算法、BFS、Prim 算法、霍夫曼编码 )中是必不可少的。它是使用堆实现的。
另一种特殊类型的队列是deque 队列(双关语它的发音是“deck”)。可以从队列的两端插入/删除元素。
特性
Maps (dictionaries)是包含键集合和值集合的抽象数据类型。每个键都有一个与之关联的值。
哈希表是一种特殊类型的映射。它使用散列函数生成一个散列码,放入一个桶或槽数组:键被散列,结果散列指示值的存储位置。
最常见的散列函数(在众多散列函数中)是模常数函数。例如,如果常量是 6,则键 x 的值是x%6。
理想情况下,散列函数会将每个键分配给一个唯一的桶,但他们的大多数设计都采用了不完善的函数,这可能会导致具有相同生成值的键之间发生冲突。这种碰撞总是以某种方式适应的。
它们是做什么用的?
Maps 最着名的应用是语言词典。语言中的每个词都为其指定了定义。它是使用有序映射实现的(其键按字母顺序排列)。
通讯录也是一张Map。每个名字都有一个分配给它的电话号码。
另一个有用的应用是值的标准化。假设我们要为一天中的每一分钟(24 小时 = 1440 分钟)分配一个从 0 到 1439 的索引。哈希函数将为h(x) = x.小时*60+x.分钟。
特性
术语:
因为maps 是使用自平衡红黑树实现的(文章后面会解释),所以所有操作都在 O(log n) 内完成;所有哈希表操作都是常量。
图是表示一对两个集合的非线性数据结构:G={V, E},其中 V 是顶点(节点)的集合,而 E 是边(箭头)的集合。节点是由边互连的值 - 描述两个节点之间的依赖关系(有时与成本/距离相关联)的线。
图有两种主要类型:有向图和无向图。在无向图中,边(x, y)在两个方向上都可用:(x, y)和(y, x)。在有向图中,边(x, y)称为箭头,方向由其名称中顶点的顺序给出:箭头(x, y)与箭头(y, x) 不同。
它们是做什么用的?
特性
图论是一个广阔的领域,但我们将重点介绍一些最知名的概念:
一棵树是一个无向图,在连通性方面最小(如果我们消除一条边,图将不再连接)和在无环方面最大(如果我们添加一条边,图将不再是无环的)。所以任何无环连通无向图都是一棵树,但为了简单起见,我们将有根树称为树。
根是一个固定节点,它确定树中边的方向,所以这就是一切“开始”的地方。叶子是树的终端节点——这就是一切“结束”的地方。
一个顶点的孩子是它下面的事件顶点。一个顶点可以有多个子节点。一个顶点的父节点是它上面的事件顶点——它是唯一的。
它们是做什么用的?
我们在任何需要描绘层次结构的时候都使用树。我们自己的家谱树就是一个完美的例子。你最古老的祖先是树的根。最年轻的一代代表叶子的集合。
树也可以代表你工作的公司中的上下级关系。这样您就可以找出谁是您的上级以及您应该管理谁。
特性
二叉树是一种特殊类型的树:每个顶点最多可以有两个子节点。在严格二叉树中,除了叶子之外,每个节点都有两个孩子。具有 n 层的完整二叉树具有所有2ⁿ-1 个可能的节点。
二叉搜索树是一棵二叉树,其中节点的值属于一个完全有序的集合——任何任意选择的节点的值都大于左子树中的所有值,而小于右子树中的所有值。
它们是做什么用的?
BT 的一项重要应用是逻辑表达式的表示和评估。每个表达式都可以分解为变量/常量和运算符。这种表达式书写方法称为逆波兰表示法 (RPN)。这样,它们就可以形成一个二叉树,其中内部节点是运算符,叶子是变量/常量——它被称为抽象语法树(AST)。
BST 经常使用,因为它们可以快速搜索键属性。AVL 树、红黑树、有序集和映射是使用 BST 实现的。
特性
BST 有三种类型的 DFS 遍历:
所有这些类型的树都是自平衡二叉搜索树。不同之处在于它们以对数时间平衡高度的方式。
AVL 树在每次插入/删除后都是自平衡的,因为节点的左子树和右子树的高度之间的模块差异最大为 1。 AVL 以其发明者的名字命名:Adelson-Velsky 和 Landis。
在红黑树中,每个节点存储一个额外的代表颜色的位,用于确保每次插入/删除操作后的平衡。
在 Splay 树中,最近访问的节点可以快速再次访问,因此任何操作的摊销时间复杂度仍然是 O(log n)。
它们是做什么用的?
AVL 似乎是数据库理论中最好的数据结构。
RBT(红黑树) 用于组织可比较的数据片段,例如文本片段或数字。在 Java 8 版本中,HashMap 是使用 RBT 实现的。计算几何和函数式编程中的数据结构也是用 RBT 构建的。
在 Windows NT 中(在虚拟内存、网络和文件系统代码中),Splay 树用于缓存、内存分配器、垃圾收集器、数据压缩、绳索(替换用于长文本字符串的字符串)。
特性
最小堆是一棵二叉树,其中每个节点的值都大于或等于其父节点的值:val[par[x]]
㈣ 计算机考研:数据结构常用算法解析(3)
第三章
例如:Exp=a*b+(c-d/e)*f
若 Exp=a*b+(c-d/e)*f 则它的
前缀式为: +*ab*-c/def
中缀式为: a*b+c-d/e*f
后缀式为: ab*cde/-fx+
综合比较它们之间的关系可得下列结论:
1.三式中的 “操作数之间的相对次序相同”;
(二叉树的三种访问次序中,叶子的相对访问次序是相同的)
2.三式中的 “运算符之间的的相对次序不同”;
3.中缀式丢失了括号信息,致使运算的次序不确定;
(而前缀和后缀运算只需要一个存储操作数的栈,而中缀求值需要两个栈,符号栈和操
作数栈)
4.前缀式的运算规则为:连续出现的两个操作数和在它们之前且紧靠它们的运算符构成一个最小表达式;
5.后缀式的运算规则为:
·运算符在式中出现的顺序恰为表达式的运算顺序;
·每个运算符和在它之前出现且紧靠它的两个操作数构成一个最小表达式;
6.中缀求值的运算规则:
如果是操作数直接入栈。
如果是运算符。这与当前栈顶比较。个如果比当前栈顶高,则入栈,如果低则说明当前栈顶是最高的必须把他先运算完了。用编译原理的话就是说当前栈顶已经是最左素短语了)
其实中缀表达式直接求值和把中缀表达式转化成后缀表达式在求值的过程惊人的相似,只不过是直接求值是求出来,而转化成后缀是输出来。
中缀表达式直接求值算法:
OPNDType EvalueExpression()
{ //OPTR 和OPND分别为运算符栈和操作数栈
InitStack(OPTR);Push(OPTR,’#’);
InitStack(OPND);c=getchar();
While(c!=’#’|| GetTop(OPTR)!=’#’)
{
If(!IN(c,OP) ) //如果是操作数,直接入操作数栈
{ push(OPND,c);
c=getchar();
}
Else //如果是运算符,则与当前的栈顶比较
{
Switch(Precede(GetTop(OPTR),c))
{
Case ‘<’: push(OPTR,c);//比当前栈顶高,这入栈
c=getchar();
break;
Case ’= ’:Pop(OPTR,x); //在我们设计的优棚肆枯先级表中,
c=getchar(); //只有’(’和’)’存在相等的情况,
break; //而在规约中间只存在‘(’‘)’
//所以我们直接把’(’弹出就可以了
Case ‘>’: //比当前栈顶低,则要把栈顶先运算完(先规约)
pop(OPTR,theta); //把栈顶运算符弹出
Pop(OPND,b); //取出操作数,并且是前操作数雹搭
Pop(OPND,a); //在下面(栈的先进后出)
Push(OPND,Operate(a,theta,b)); //运算的结果入栈
//(他是其他运算符的操作数)
Break;
}//Switch
}//链洞else
}//whild
Return GetTop(OPND);//操作数栈中最后剩下的就是整个表达式的结果了。
}
考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
㈤ 计算机考研:数据结构常用算法解析(7)
第七章:
对于无向图,e的范围是:
数据结构中所讨论的图都是简单图,任意两结点间不会有双重的边。
对于有向图,e的范围是:
图的各种存储结构
邻接矩阵很方便访问任意两点的边,但是不方便计算其邻接点。在深度和广度遍历中广泛的需要求某点的邻接点。所以邻接矩阵只在Floyed和Prim和Dijstra中采用。
邻接表能很方便的求某顶点的邻接点,索引对于与遍历有关的算法大多都采用邻接表。如深度、广度、拓扑排序、关键路径。但他也有不足的地方,就是不方便求入度或是那些薯早握点可以到他的操作。所以有人引进逆邻接表。最后人们把这两种表结合到一起就是十字链表和邻接多重表。一个是存储有向图,另一个是存储无向图。
在十字链睁历表和邻接多重表很方便求邻接点的操作和对应的逆操作。所以实际应用中,凡是能用邻接表实现的一定能用十字链表和邻接多重表实现。并且它们的存储效率更高。
1.邻接矩阵(有向图和无向图和网)又称为数组表示法
typedef struct
{ vextype vexs[maxn]; ∥顶点存储空间∥
adjtype A[maxn][maxn]; ∥邻接矩阵∥
int vexnum,arcnum; //图的顶点数和边数
GraphKind Kind; //图的类型
} mgraph;
2.邻接表(有向图和无向图和网)
typedef struct node ∥边
{ int adj; int w; ∥邻接点、权∥
struct node *next; ∥指向下一弧或边∥
}linknode;
typedef struct ∥顶点类型∥
{ vtype data; ∥顶点值域∥
linknode *farc; ∥指向与本顶点关联的第一条弧或边∥
}Vnode;
typedef struct
{
Vnode G[maxn]; ∥顶点表∥
int vexnum,arcnum;
GraphKind kind;
}ALGraph;
adjvexnextarcinfo
边结点
datafirstarc
顶点结点
3.十字链表(有向图和有向网)
headvextaivexhlinktlinkinfo
边结点
datafirstinfirstout
顶点结点
4.邻接多重表(无向图)
markivexjvexilinkjlinkinfo
边结点
datafirstedge
顶点结点
有向无环图(DAG):是描述含有公共子式的表达式的有效工具。二叉树也能表示表达式,但是利用有向无环图可以实现对相同子式的共享,从而节省存储空间。
顶点的度:
无向图:某顶点V的度记为D(V),代表与V相关联的边的条数
有向图:顶点V的度D(V)=ID(V)+OD(V)
强连通分量:在有向图中,若图中任意两顶点间都存在路径,则称其是强连通图。图中极大 强连通子图称之为强连通分量
“极大”在这里指的是:往一个连通分量中再加入顶点和边,就构不成原图中的一个 连通子图,即连通分量是一个最大集的连通子图。有向图的连通就是指该有向图是强连通的。
考研有疑问、不知道如何总结考研考点内容、不清楚数庆考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
㈥ PYTHON的数据结构和算法介绍
当你听到数据结构时,你会想到什么?
数据结构是根据类型组织和分组数据的容器。它们基于可变性和顺序而不同。可变性是指创建后改变对象的能力。我们有两种类型的数据结构,内置数据结构和用户定义的数据结构。
什么是数据算法-是由计算机执行的一系列步骤,接受输入并将其转换为目标输出。
列表是用方括号定义的,包含用逗号分隔的数据。该列表是可变的和有序的。它可以包含不同数据类型的混合。
months=['january','february','march','april','may','june','july','august','september','october','november','december']
print(months[0])#print the element with index 0
print(months[0:7])#all the elements from index 0 to 6
months[0]='birthday #exchange the value in index 0 with the word birthday
print(months)
元组是另一种容器。它是不可变有序元素序列的数据类型。不可变的,因为你不能从元组中添加和删除元素,或者就地排序。
length, width, height =9,3,1 #We can assign multiple variables in one shot
print("The dimensions are {} * {} * {}".format(length, width, height))
一组
集合是唯一元素的可变且无序的集合。它可以让我们快速地从列表中删除重复项。
numbers=[1,2,3,4,6,3,3]
unique_nums = set(numbers)
print(unique_nums)
models ={'declan','gift','jabali','viola','kinya','nick',betty' }
print('davis' in models)#check if there is turner in the set models
models.add('davis')
print(model.pop())remove the last item#
字典
字典是可变和无序的数据结构。它允许存储一对项目(即键和值)
下面的例子显示了将容器包含到其他容器中来创建复合数据结构的可能性。
* 用户定义的数据结构*
使用数组的堆栈堆栈是一种线性数据结构,其中元素按顺序排列。它遵循L.I.F.O的机制,意思是后进先出。因此,最后插入的元素将作为第一个元素被删除。这些操作是:
溢出情况——当我们试图在一个已经有最大元素的堆栈中再放一个元素时,就会出现这种情况。
下溢情况——当我们试图从一个空堆栈中删除一个元素时,就会出现这种情况。
队列是一种线性数据结构,其中的元素按顺序排列。它遵循先进先出的F.I.F.O机制。
描述队列特征的方面
两端:
前端-指向起始元素。
指向最后一个元素。
有两种操作:
树用于定义层次结构。它从根节点开始,再往下,最后的节点称为子节点。
链表
它是具有一系列连接节点的线性数据。每个节点存储数据并显示到下一个节点的路由。它们用来实现撤销功能和动态内存分配。
图表
这是一种数据结构,它收集了具有连接到其他节点的数据的节点。
它包括:
算法
在算法方面,我不会讲得太深,只是陈述方法和类型:
原文:https://www.tuicool.com/articles/hit/VRRvYr3
㈦ 计算机考研:数据结构常用算法解析(4)
第四章
KMP算法和朴素的匹配算法的关键区别就是解决了主串指针i的回溯,原理如下:
设主串S[]和模式串T[],如比较到模式串的第j个字符。 当主串指针i和模式串指针j比较时 ,说明他们前面的所有字符都已经对应相等了。而
Next[j]=k的定义是T1T2…Tk-1==Tj-k+1Tj-k+2….Tj-1且k是最大了,没有更长的了。
所以Si和Tj比较失败时Si和Tk去比较。不可能有 这种匹配的成功,因为S2S3…..Si-1= =T2T3……Tj-1,而T2T3….Tj-1是不等于T1T2….Tj-2。除非next[j]=j-1;因为next定义的是最长的。所以任何挪动小于next[j]的串的匹配都是不能成功的。直到Tnext[j]和S[i]相比是才是最早有可能成功的。
Int KMP_Index(Sstring S,Sstring T,int pos)
{
i=pos;j=1;
while(i<=S[0]&&j<=T[0])
{
If(j=0||S[i]=T[j])//j=0表示模式串已经退到起点了说明在这个位置彻底不可能了,
{ ++i; ++j; } //i必须下移,j回到1开始
Else j=next[j];
}
If(j>T[0]) return i-T[0];
Else return 0;
}
求next[j]的方法和原理
设尺肆羡k=next[j];那么T1T2…Tk-1= =Tj-k+1……Tj-2Tj-1;
若Tj= =Tk,那么T1T2…Tk-1Tk= =Tj-k+1……Tj-2Tj-1Tj;
所以 next[j+1]=k+1=next[j]+1;且T1T2…Tk-1= =Tj-k+1……Tj-2Tj-1已经是
最长雹弊的序列,所以k+1也是next[j+1]最长的
若Tj不等于Tk,那么就需要重找了。即…..Tj-1Tj ?,
T1T2….
所以next[j+1]首先=k=next[j]; 即…..Tj-1Tj ?,
T1T2…Tk-1.
若不相等,则next[j+1]=next[k]; 即…..Tj-1Tj ?,
T1T2….Tnext[k]-1
直到找到这样的序列, 即…..Tj-1Tj ?,
T1T2 ...To
那么,next[j+1]=next[next[j]]=next[next[next[j]]]…..=o+1;
Void get_next(Sstring T,int next[])
{
i=1; next[1]=0; j=0;//i表示当前求的next
While(i
{
if(j=0 | | T[i]=T[j])
{
++i;
++j;
next[i]=j;
}
Else j=next[j];
}
}
因为 next[ ] 在匹配过程中,若T[ j ]=T[ next[j] ];那么当 S[i]不等于T[j],
S[ i]肯定也不等于T[k= next[j] ];
所以 S[i]应直接与T[next[k]]比较,而我们通陵拍过将next[j]修正
为nextval[j]=next[next[j]];这样能使比较更少。
Void get_nextval(Sstring T,int nextval[])
{
i=1; nextval[1]=0; j=0;
while(i
{
if(j=0 || T[i]= T[j])
{
++i;
++j;
if(T[i]!=T[j])
nextval[i]=j;
else
nextval[i]=next[j];
}
else
j=nextval[j];
}
空格串是指__由空格字符(ASCII值32)所组成的字符串,其长度等于 空格个数____。
在模试匹配KMP算法中所用失败函数f的定义中,为何要求p1p2……pf(j)为p1p2……pj两头匹配的真子串?且为最大真子串?
失败函数(即next)的值只取决于模式串自身,若第j个字符与主串第i个字符失配时,主串不回溯, 模式串用第k(即next[j])个字符与第i个相比,有‘p1…pk-1’=‘pj-k+1…pj-1’,为了不因模式串右移与主串第i个字符比较而丢失可能的匹配,对于上式中存在的多个k值,应取其中最大的一个。这样,因j-k最小,即模式串向右滑动的位数最小,避免因右移造成的可能匹配的丢失。
第4章节有关数据结构算法,上文中为大家作了分析,希望考生对于这些算法能够熟记于心,方便考试的应用和日后的实际操作,预祝大家都能够取得好成绩,加油!
更多详情请点击:计算机考研:数据结构常用算法解析汇总
考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/