导航:首页 > 源码编译 > 压缩感知算法

压缩感知算法

发布时间:2022-02-23 19:48:21

⑴ 请问压缩感知重构omp算法中的这句代码,a=pinv(D(:,indx(1:j)))*x;广义矩阵和信号的乘积 a是求的什么呢

你对照着这个步骤再看看程序吧~

⑵ 毕业设计--基于压缩感知的重构算法性能比较(贪婪算法和凸优化算法)求指导

于压缩感知的重构算法性能比较(贪婪算法和凸优化算
肯定

⑶ 有人在学压缩感知吗谁知道怎么用0范数或者L1范数最小化重构原始信号或者给我文献也行

用0范数或1范数解决cs重构归属一个数学问题,犹如给定你一个公式,利用这个公式或者说原理去做出很多的算法,cs重构本归属与对0范数的求解问题上的。
但0范数属于数学上一个NP_hard问题,是无法解决的,所以不能直接用求0范数的理论去做算法,从而提出一系列基于求0范数最小的贪婪类算法。如MP,OMP等算法。,这类算法中,最为基础的算是MP算法了。贪婪算法的速度较快,但是重构效果相对较差,需要的测量数也较多,不能高效地压缩信号,并且对测量矩阵的要求更高。但总的来说,应用范围广。
数学家同时发现,求解L1范数也可以逼近与0范数的效果,即把NP_hard问题转化为线性规划问题。所以现在有很多用求L1范数原理而创造了各类算法,最典型的是BP(基追踪)算法和梯度投影稀疏重构算法。这种算法重构效果很好,但是运算量大,复杂,应用于实际上可能不大。至少得改进其算法。
还有一大类算法,我不关注,不说了。
具体那些算法怎么实现,自己去网上下程序仿真一下吧。。。。

⑷ 压缩感知过时了吗

没有过时,依然是主流畅谈的话题,使用度依旧广泛。

压缩感知的核心点在于,其不遵从奈奎斯特采样定理。而这原因在于,压缩感知的采样是随机的,不等间距的,故不用管奈奎斯特。不过压缩感知也是有要求的,它需要保证信号是稀疏的。

一旦信号不稀疏,进行违背奈奎斯特的随机非等间距采样时,频域上的交叠会导致难以恢复原始信号。在压缩感知过程中,如果将采样频率降低,使得其很小,那么采样的时域间隔就会相对很大,加上一定方式的随机采样,此时采样得到的数据量就会很小,从而实现了一种压缩。

压缩感知与传统的采样+压缩的模式不同的是,它首先不遵从奈奎斯特采样定理,其次,它并没有分为采样和压缩,应该说,压缩感知的采样就是压缩。采样之后将采样的数据直接传输,之后在接收端便可以通过适当的重构算法进行重构。

⑸ 压缩感知重构OMP算法代码

%A-稀疏系数矩阵
%D-字典/测量矩阵(已知)
%X-测量值矩阵(已知)
%K-稀疏度
function A=OMP(D,X,L)
[n,P]=size(X);
[n,K]=size(D);
for k=1:P
a=[];
x=X(:,k);
resial=x;%残差
indx=zeros(L,1);%索引集
for j=1:L
proj=D'*resial;%D转置与resial相乘,得到与resial与D每一列的内积值
pos=find(abs(proj)==max(abs(proj)));%找到内积最大值的位置
pos=pos(1);%若最大值不止一个,取第一个
indx(j)=pos;%将这个位置存入索引集的第j个值
a=pinv(D(:,indx(1:j)))*x;%indx(1:j)表示第一列前j个元素
resial=x-D(:,indx(1:j))*a;
end
temp=zeros(K,1);
temp(indx)=a;
A(:,k)=temp;%只显示非零值及其位置
end

⑹ 压缩感知的主要应用

认知无线电方向:宽带谱感知技术是认识无线电应用中一个难点和重点。它通过快速寻找监测频段中没有利用的无线频谱,从而为认知无线电用户提供频谱接入机会。传统的滤波器组的宽带检测需要大量的射频前端器件,并且不能灵活调整系统参数。普通的宽带接收电路要求很高的采样率,它给模数转换器带来挑战,并且获得的大量数据处理给数字信号处理器带来负担。针对宽带谱感知的难题,将压缩感知方法应用到宽带谱感知中:采用一个宽带数字电路,以较低的频谱获得欠采样的随机样本,然后在数字信号处理器中采用稀疏信号估计算法得到宽带谱感知结果。
信道编码:压缩传感理论中关于稀疏性、随机性和凸最优化的结论可以直接应用于设计快速误差校正编码, 这种编码方式在实时传输过程中不受误差的影响。在压缩编码过程中, 稀疏表示所需的基对于编码器可能是未知的. 然而在压缩传感编码过程中, 它只在译码和重构原信号时需要, 因此不需考虑它的结构, 所以可以用通用的编码策略进行编码. Haupt等通过实验表明如果图像是高度可压缩的或者SNR充分大, 即使测量过程存在噪声, 压缩传感方法仍可以准确重构图像。 波达方向估计:目标出现的角度在整个扫描空间来看,是极少数。波达方向估计问题在空间谱估计观点来看是一个欠定的线性逆问题。通过对角度个数的稀疏限制,可以完成压缩感知的波达方向估计。
波束形成:传统的 自适应波束形成因其高分辨率和抗干扰能力强等优点而被广泛采用。但同时它的高旁瓣水平和角度失匹配敏感度高问题将大大降低接收性能。为了改进Capon 波束形成的性能,这些通过稀疏波束图整形的方法限制波束图中阵列增益较大的元素个数,同时鼓励较大的阵列增益集中在波束主瓣中,从而达到降低旁瓣水平同时,提高主瓣中阵列增益水平,降低角度失匹配的影响。例如,最大主瓣旁瓣能量比,混合范数法,最小全变差。 运用压缩传感原理, RICE大学成功研制了单像素压缩数码照相机。 设计原理首先是通过光路系统将成像目标投影到一个数字微镜器件(DMD)上, 其反射光由透镜聚焦到单个光敏二极管上, 光敏二极管两端的电压值即为一个测量值y, 将此投影操作重复M次, 得到测量向量 , 然后用最小全变分算法构建的数字信号处理器重构原始图像。数字微镜器件由数字电压信号控制微镜片的机械运动以实现对入射光线的调整。 由于该相机直接获取的是M次随机线性测量值而不是获取原始信号的N(M,N)个像素值, 为低像素相机拍摄高质量图像提供了可能.。
压缩传感技术也可以应用于雷达成像领域, 与传统雷达成像技术相比压缩传感雷达成像实现了两个重要改进: 在接收端省去脉冲压缩匹配滤波器; 同时由于避开了对原始信号的直接采样, 降低了接收端对模数转换器件带宽的要求. 设计重点由传统的设计昂贵的接收端硬件转化为设计新颖的信号恢复算法, 从而简化了雷达成像系统。 生物传感中的传统DNA芯片能平行测量多个有机体, 但是只能识别有限种类的有机体, Sheikh等人运用压缩传感和群组检测原理设计的压缩传感DNA芯片克服了这个缺点。 压缩传感DNA芯片中的每个探测点都能识别一组目标, 从而明显减少了所需探测点数量. 此外基于生物体基因序列稀疏特性, Sheikh等人验证了可以通过置信传播的方法实现压缩传感DNA芯片中的信号重构。

⑺ 压缩感知是什么

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

⑻ 稀疏度为1的信号,用压缩感知恢复原始信号,匹配追踪算法(MP)和正交匹配追踪算法(OMP)的结果一样吗

压缩感知(Compressed Sensing, CS)[1]理论具有全新的信号获取和处理方式,该理论解决了传统的Nyquist方法采样频率较高的问题,大大降低了稀疏信号精确重构所需的采样频率。
另外,CS理论在数据采集的同时完成数据压缩,从而节约了软、硬件资源及处理时间。
这些突出优点使其在信号处理领域有着广阔的应用前景!

⑼ 压缩感知的基本知识

现代信号处理的一个关键基础是 Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。但是Shannon 采样定理是一个信号重建的充分非必要条件。在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

⑽ 压缩感知重构算法的复杂度是如何分析分析的

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
2811 SAF ESS operated 急停关作

阅读全文

与压缩感知算法相关的资料

热点内容
文档中加密的格式 浏览:518
androidgallery效果 浏览:256
make编译显示无法分配内存 浏览:64
可编程式机械定时器 浏览:115
浙江增值税发票安全服务器地址 浏览:572
河南农信app上身份证更新在哪里 浏览:735
战地1被服务器ban了怎么办 浏览:666
shell暂停命令 浏览:726
云服务器ecs更换可用区 浏览:325
菜鸟裹裹的加密有什么用 浏览:187
农商银行app账号是什么格式 浏览:979
liunx安装androidsdk 浏览:595
显卡云服务器对比知乎 浏览:178
怎么判断雨棚旁柱子是否加密 浏览:397
android挂号源码 浏览:397
买车有什么app可以查看车型 浏览:1002
如何保证公司服务器安全 浏览:586
如何在本地iis服务器写代码 浏览:938
剑灵电信服务器怎么样 浏览:652
骨科手术学pdf 浏览:772