❶ LRU算法 O(1)时间复杂度
实现缓粗LRU算法,查找删除时间复杂度都为O(1)
LRU Cache是一个Cache置换算法,含义是“最近最少使用”,当Cache满(没有空闲的cache块)时,扰缺镇把满足“最近最少使用”的数据从Cache中置换出去,并且保证Cache中第一个数据是最近刚刚访问的
实现思路
利用hashmap加链扮燃表来实现这个原理
链表元素node由两个元素构成(key-value),在hashmap中存入node的key值,以及node;hashmap的构成为<Integer,Node>
为保证每次查找为O(1)并要判断双向链表里面是否含有元素,所以要将node设为两个值,key和value,其中node的key与map的值相同,当hashmap中存在key的时候,则双向链表中也存在key。利用这个特质,能完成查找删除都为O(1)
将最小使用的元素删除,核心就是每次插入的时候,都插入到链表的头结点;每次get一个元素时候,将get的那个元素删除,然后将元素插入到头结点
❷ LRU 缓存淘汰算法
当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部,然后淘汰头部数据。
因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。如果我们将散列表和双向链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)。
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。
这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,通过双向链表都可以在 O(1) 的时间复杂度内完成。所以,这三个操作的时间复杂度都是 O(1)。
至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持 LRU 缓存淘汰算法的缓存系统原型。
散列表中数据是经过散列函数打乱之后无规律存储的,但是 LinkedHashMap可以 做到按照数据的插入顺序来存储。
每次调用 put() 函数,往 LinkedHashMap 中添加数据的时候,都会将数据添加到链表的尾部,再次将键值为 3 的数据放入到 LinkedHashMap 的时候,会先查找这个键值是否已经有了,然后,再将已经存在的 (3,11) 删除,并且将新的 (3,26) 放到链表的尾部,访问到 key 为 5 的数据的时候,我们将被访问到的数据移动到链表的尾部。
所以按照访问时间排序的 LinkedHashMap 本身就是一个支持 LRU 缓存淘汰策略的缓存系统。
散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。
❸ lru算法是什么
lru算法是一种页面置换算法,在对于内存中但是又不用的数据块,叫做LRU,操作系统会根据那些数据属于LRU而将其移出内存而腾出空间来加载另外的数据。
LRU算法:最近最少使用,简单来说就是将数据块中,每次使用过的数据放在数据块的最前端,然后将存在的时间最长的,也就是数据块的末端的数据剔除掉这就是LRU算法。
如果进程被调度,该进程需要使用的外存页(数据)不存在于数据块中,这个现象就叫做缺页。如果这个数据此时不在,就会将这个数据从加入到数据块首部。
数据块插入与剔除:每次有新数据到来时,会将其放入数据块首部,当数据每次被访问时,将这个数据插入数据块的首部如果数据块满了,每次新进的数据都会将数据块尾部的数据挤出数据块。
差距
为了尽量减少与理想算法的差距,产生了各种精妙的算法,最少使用页面置换算法便是其中一个。LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。
反过来说,已经很久没有使用的页面很可能在未来较长的一段时间内不会被用到。这个,就是着名的局部性原理——比内存速度还要快的cache,也是基于同样的原理运行的。因此,我们只需要在每次调换时,找到最少使用的那个页面调出内存。这就是LRU算法的全部内容。
LRU在电子系统中的解释:
Line Replaceable Unit—LRU,电子系统中常采用模块化设计,这种可更换的模块单元则被叫做LRU,中文名称是“线性可更换单元”。
❹ LRU算法具体怎么算的,有没有例子
有例子 LRU(least recently used)最近最久未使用。
假设 序列为 4 3 4 2 3 1 4 2
物理块有3个 则
首轮 4调入内存 4
次轮 3调入内存 3 4
之后 4调入内存 4 3
之后 2调入内存 2 4 3
之后 3调入内存 3 2 4
之后 1调入内存 1 3 2(因为最近最久未使用的是4,从这里向前找最近最久未使用的)
之后 4调入内存 4 1 3(原理同上)
最后 2调入内存 2 4 1
过程就是这样的,楼主只要明白最近最久未使用这个道理,再回去参考书上的例子就明白是怎么算的啦!呵呵!
❺ lru的算法是什么
lru的算法是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 t,当须淘汰一个页面时,选择现有页面中其 t 值最大的,即最近最少使用的页面予以淘汰。
对于虚拟页式存储,内外存信息的替换是以页面为单位进行的——当需要一个放在外存的页面时,把它调入内存,同时为了保持原有空间的大小,还要把一个内种调动越少,进程执行的效率也就越高。
硬件支持
LRU置换算法虽然是一种比较好的算法,但要求系统有较多的支持硬件。为了了解一个进程在内存中的各个页面各有多少时间未被进程访问,以及如何快速地知道哪一页是最近最久未使用的页面,须有两类硬件之一的支持:寄存器或栈。
寄存器
为了记录某进程在内存中各页的使用情况,须为每个在内存中的页面配置一个移位寄存器,可表示为:
R = Rn-1 Rn-2 Rn-3…R2 R1 R0。
❻ LRU页面淘汰算法
LRU算法
最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰。
LRU的实现(需要“堆栈”支持)
可利用一个特殊的栈来保存当前使用的各个页面的页面号。每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号。
❼ lru算法是什么呢
LRU算法是最少使用页面置换算法(Least Recently Used),首先置换近期最长时间以来没被访问的页面,是为虚拟页式存储管理服务的。
LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
LRU原理
该思想最初用于计算机操作系统中,内存中的容量较有限,为了能更加合理的利用内存中的性能,对用户的使用作出假设,最近最少使用的越不重要,最近使用的越有可能使用到,使得该元素更容易获取到。
如果元素当前容量超过了内存最大容量,则需要删除掉最近最少使用的元素。在其之后,许多缓存及许多分布式系统都采用才思想。