导航:首页 > 源码编译 > 最优算法步骤

最优算法步骤

发布时间:2023-06-10 04:38:31

⑴ 优化算法笔记(一)优化算法的介绍

(以下描述,均不是学术用语,仅供大家快乐的阅读)

        我们常见常用的算法有排序算法,字符串遍历算法,寻路算法等。这些算法都是为了解决特定的问题而被提出。

        算法本质是一种按照固定步骤执行的过程。

        优化算法也是这样一种过程,是一种根据概率按照固定步骤寻求问题的最优解的过程。与常见的排序算法、寻路算法不同的是,优化算法不具备等幂性,是一种 概率算法 。算法不断的 迭代 执行同一步骤直到结束,其流程如下图。

        等幂性即 对于同样的输入,输出是相同的 。

        比如图1,对于给定的鱼和给定的熊掌,我们在相同的条件下一定可以知道它们谁更重,当然,相同的条件是指鱼和熊掌处于相同的重力作用下,且不用考虑水分流失的影响。在这些给定的条件下,我们(无论是谁)都将得出相同的结论,鱼更重或者熊掌更重。我们可以认为,秤是一个等幂性的算法(工具)。

        现在把问题变一变,问鱼与熊掌你更爱哪个,那么现在,这个问题,每个人的答案可能不会一样,鱼与熊掌各有所爱。说明喜爱这个算法不是一个等幂性算法。当然你可能会问,哪个更重,和更喜欢哪个这两个问题一个是客观问题,一个是主观问题,主观问题没有确切的答案的。当我们处理主观问题时,也会将其转换成客观问题,比如给喜欢鱼和喜欢熊掌的程度打个分,再去寻求答案,毕竟计算机没有感情,只认0和1(量子计算机我不认识你)。

        说完了等幂性,再来说什么是概率算法。简单来说就是看脸、看人品、看运气的算法。

        有一场考试,考试的内容全部取自课本,同时老师根据自己的经验给同学们划了重点,但是因为试卷并不是该老师所出,也会有考试内容不在重点之内,老师估计试卷中至少80%内容都在重点中。学霸和学渣参加了考试,学霸为了考满分所以无视重点,学渣为了pass,因此只看了重点。这样做的结果一定是score(学霸)>=score(学渣)。

        当重点跟上图一样的时候,所有的内容都是重点的时候,学霸和学渣的学习策略变成了相同的策略,则score(学霸)=score(学渣)。但同时,学渣也要付出跟学霸相同的努力去学习这些内容,学渣心里苦啊。

        当课本如下图时

        学霸?学霸人呢,哪去了快来学习啊,不是说学习一时爽,一直学习一直爽吗,快来啊,还等什么。

        这时,如果重点内容远少于书本内容时,学渣的学习策略有了优势——花费的时间和精力较少。但是同时,学渣的分数也是一个未知数,可能得到80分也可能拿到100分,分数完全取决于重点内容与题目的契合度,契合度越高,分数越高。对学渣来说,自己具体能考多少分无法由自己决定,但是好在能够知道大概的分数范围。

        学霸的学习策略是一种遍历性算法,他会遍历、通读全部内容,以保证满分。

        学渣的学习策略则是一种概率算法,他只会遍历、学习重点内容,但至于这些重点是不是真重点他也不知道。

        与遍历算法相比,概率算法的结果具有不确定性,可能很好,也可能很差,但是会消耗更少的资源,比如时间(人生),空间(记忆)。概率算法的最大优点就是 花费较少的代价来获取最高的收益 ,在现实中体现于节省时间,使用很少的时间得到一个不与最优解相差较多的结果。

        “庄子:吾生也有涯,而知也无涯;以有涯随无涯,殆矣。”的意思是:人生是有限的,但知识是无限的(没有边界的),用有限的人生追求无限的知识,是必然失败的。

        生活中概率算法(思想)的应用其实比较广泛,只是我们很少去注意罢了。关于概率算法还衍生出了一些有趣的理论,比如墨菲定律和幸存者偏差,此处不再详述。

        上面说到,优化算法就是不停的执行同样的策略、步骤直到结束。为什么要这样呢?因为优化算法是一种概率算法,执行一次操作就得到最优结果几乎是不可能的,重复多次取得最优的概率也会增大。

        栗子又来了,要从1-10这10个数中取出一个大于9的数,只取1次,达到要求的概率为10%,取2次,达到要求的概率为19%。

        可以看出取到第10次时,达到要求的概率几乎65%,取到100次时,达到要求的概率能接近100%。优化算法就是这样简单粗暴的来求解问题的吗?非也,这并不是一个恰当的例子,因为每次取数的操作之间是相互独立的,第2次取数的结果不受第1次取数结果的影响,假设前99次都没达到要求,那么再取一次达到要求的概率跟取一次达到要求的概率相同。

        优化算法中,后一次的计算会依赖前一次的结果,以保证后一次的结果不会差于前一次的结果。这就不得不谈到马尔可夫链了。

        由铁组成的链叫做铁链,同理可得,马尔可夫链就是马尔可夫组成的链。

        言归正传, 马尔可夫链(Markov Chain, MC) ,描述的是 状态转移的过程中,当前状态转移的概率只取决于上一步的状态,与其他步的状态无关 。简单来说就是当前的结果只受上一步的结果的影响。每当我看到马尔可夫链时,我都会陷入沉思,生活中、或者历史中有太多太多与马尔可夫链相似的东西。西欧封建等级制度中“附庸的附庸不是我的附庸”与“昨天的努力决定今天的生活,今天的努力决定明天的生活”,你的下一份工作的工资大多由你当前的工资决定,这些都与马尔可夫链有异曲同工之处。

        还是从1-10这10个数中取出一个大于9的数的这个例子。基于马尔可夫链的概率算法在取数时需要使当前取的数不小于上一次取的数。比如上次取到了3,那么下次只能在3-10这几个数中取,这样一来,达到目标的概率应该会显着提升。还是用数据说话。

        取1次达到要求的概率仍然是

        取2次内达到要求的概率为

        取3次内达到要求的概率为

        取4次内……太麻烦了算了不算了

        可以看出基于马尔可夫链来取数时,3次内能达到要求的概率与不用马尔可夫链时取6次的概率相当。说明基于马尔可夫链的概率算法求解效率明显高于随机概率算法。那为什么不将所有的算法都基于马尔可夫链呢?原因一,其实现方式不是那么简单,例子中我们规定了取数的规则是复合马尔可夫链的,而在其他问题中我们需要建立适当的复合马尔科夫链的模型才能使用。原因二,并不是所有的问题都符合马尔科夫链条件,比如原子内电子出现的位置,女朋友为什么会生(lou)气,彩票号码的规律等,建立模型必须与问题有相似之处才能较好的解决问题。

        介绍完了优化算法,再来讨论讨论优化算法的使用场景。

        前面说了优化算法是一种概率算法,无法保证一定能得到最优解,故如果要求结果必须是确定、稳定的值,则无法使用优化算法求解。

        例1,求城市a与城市b间的最短路线。如果结果用来修建高速、高铁,那么其结果必定是唯一确定的值,因为修路寸土寸金,必须选取最优解使花费最少。但如果结果是用来赶路,那么即使没有选到最优的路线,我们可能也不会有太大的损失。

        例2,求城市a与城市b间的最短路线,即使有两条路径,路径1和路径2,它们从a到b的距离相同,我们也可以得出这两条路径均为满足条件的解。现在将问题改一下,求城市a到城市b耗时最少的线路。现在我们无法马上得出确切的答案,因为最短的线路可能并不是最快的路线,还需要考虑到天气,交通路况等因素,该问题的结果是一个动态的结果,不同的时间不同的天气我们很可能得出不同的结果。

        现实生产、生活中,也有不少的场景使用的优化算法。例如我们的使用的美图软件,停车场车牌识别,人脸识别等,其底层参数可能使用了优化算法来加速参数计算,其参数的细微差别对结果的影响不太大,需要较快的得出误差范围内的参数即可;电商的推荐系统等也使用了优化算法来加速参数的训练和收敛,我们会发现每次刷新时,推给我们的商品都有几个会发生变化,而且随着我们对商品的浏览,系统推给我们的商品也会发生变化,其结果是动态变化的;打车软件的订单系统,会根据司机和客人的位置,区域等来派发司机给客人,不同的区域,不同的路况,派发的司机也是动态变化的。

        综上我们可以大致总结一下推荐、不推荐使用优化算法的场景的特点。

        前面说过,优化算法处理的问题都是客观的问题,如果遇到主观的问题,比如“我孰与城北徐公美”,我们需要将这个问题进行量化而转换成客观的问题,如身高——“修八尺有余”,“外貌——形貌昳丽”,自信度——“明日徐公来,孰视之,自以为不如;窥镜而自视,又弗如远甚”,转化成客观问题后我们可以得到各个解的分数,通过比较分数,我们就能知道如何取舍如何优化。这个转化过程叫做问题的建模过程,建立的问题模型实际上是一个函数,这个函数对优化算法来说是一个黑盒函数,即不需要知道其内部实现只需要给出输入,得到输出。

        在优化算法中这个黑盒函数叫做 适应度函数 , 优化算法的求解过程就是寻找适应度函数最优解的过程 ,使用优化算法时我们最大的挑战就是如何将抽象的问题建立成具体的模型,一旦合适的模型建立完成,我们就可以愉快的使用优化算法来求解问题啦。(“合适”二字谈何容易)

        优化算法的大致介绍到此结束,后面我们会依次介绍常见、经典的优化算法,并探究其参数对算法性能的影响。

——2019.06.20

[目录]

[下一篇 优化算法笔记(二)优化算法的分类]

python算法设计的步骤有三步分别是

1. 弄清楚题目的意思,列出题目的输入、输出、约束条件
其中又一道题目是这样的:“有一个mxn的矩阵,每一行从左到右是升序的,每一列从上到下是升序的。请实现一个函数,在矩阵中查找元素elem,找到则返回elem的位置。”题设只说了行和列是升序的,我在草稿纸上画了一个3x4的矩阵,里面的元素是1~12,于是我就想当然的认为矩阵的左上角是最小的元素,右下角是最大的元素。于是整个题目的思考方向就错了。
2. 思考怎样让算法的时间复杂度尽可能的小
继续以上面的题目为例子。可以有如下几种算法:
a. 遍历整个矩阵进行查找,那么复杂度为O(m*n);
b. 因为每一行是有序的,所以可以对每一行进行二分查找,复杂度为O(m*logn)。但是这样只用到了行有序的性质。
c. 网上查了一下,最优的算法是从矩阵的左下角开始,比较左下角的元素(假设为X)与elem的大小,如果elem比X大,那么X所在的那一列元素就都被排除了,因为X是该列中最大的了,比X还大,那么肯定比X上面的都大;如果elem比X小,那么X所在的那一行就可以排除了,因为X是这一行里最小的了,比X还小那么肯定比X右边的都小。每迭代一次,矩阵的尺寸就缩小一行或一列。复杂度为O(max(m,n))。
可以先从复杂度较高的实现方法入手,然后再考虑如何利用题目的特定条件来降低复杂度。
3. 编写伪代码或代码

⑶ 求最优路径的算法

以下是C写的广度优先的最短路径穷举法,希望对你有所帮助.
#include <iostream>
#include <string>
#include <vector>
#include <map>

using namespace std;

#define SIGHTS 4 //自定义景点个数为4,以后可以扩充

class Sight //景点类信息,以后可以扩充
{
public:
Sight(string name, string sd) { sname = name; sight_detial = sd; }
string Sight_Name() { return sname; }
string Sight_detial() { return sight_detial; }
protected:
string sname; //景点名称
string sight_detial; //景点备注
};

struct SI
{
string sname; //景点名称
int index; //景点编码
};

SI SightInfo[SIGHTS];

map<int, string>results; //距离与路径的映射结构体,可以动态扩充
vector<Sight> sights; //VECTOR向量保存景点信息,目前的作用只是保存
//但是其强大的功能完全可以应付以后的功能扩充

int MinDistanct = 50000; //假定最小距离为一个很大的值
string Sight_Names = "枫林园蛟桥园青山园麦庐园 "; //目标字符串
string Best_Path; //保存最佳路径的STRING字符串

int DISTANCE[4][4] = { //查找表,用于储存接点之间距离的信息
0, 1500, 2500, 2400,
1500, 0, 800, 0,
2500, 800, 0, 200,
2400, 0, 200, 0
};

bool connect[4][4] = { //查找表,用于储存接点之间连通的信息
0, 1, 1, 1,
1, 0, 1, 0,
1, 1, 0, 1,
1, 0, 1, 0
};

void InitSights()
{ //初始化景点的各类信息
SightInfo[0].index=0;
SightInfo[0].sname = "麦庐园";
SightInfo[1].index=1;
SightInfo[1].sname = "枫林园";
SightInfo[2].index=2;
SightInfo[2].sname = "蛟桥园";
SightInfo[3].index=3;
SightInfo[3].sname = "青山园";

Sight s1("枫林园",
"枫林园以计算机系的理工科学生为主,是江西财经大学的唯一一个计算机学院");
sights.push_back(s1);
Sight s2("蛟桥园",
"蛟桥园是江西财经大学的会计、贸易等财务教学为主的教学楼群,为本部");
sights.push_back(s2);
Sight s3("青山园",
"青山园是江西财经大学的会计、贸易等财务教学为主的学生的宿舍群");
sights.push_back(s3);
Sight s4("麦庐园",
"麦庐园是江西财经大学的外语、艺术等人文科学为主的学习园地");
sights.push_back(s4);
}

void Find_Ways(string start, string end, int DIST, string path, int depth)
{ //递归调用,逐层寻找可连通的路径,并以该路径继续重复循环查找,根据分析可以
//知道,所有最优解即最短路径所经过的接点数目必定小于N,于是采用广度优先遍历,
//设置count为循环深度,当count大于SIGHTS时退出循环
int count = 1;
int i,j;
int start1 = 0,end1 = 0;
int distanct = 0, storeDist = 0;
string temp, target, pathway, storePath; //临时储存体,用于恢复递归调用后会
//改变的数据,以便之后无差别使用

count += depth;

if(count > SIGHTS)
return;

distanct += DIST; //距离累加

if(path=="") //第一次时,pathway初始化为第一个接点名称
{
pathway = start;
pathway += "=>";
}
if(path!="")
pathway = path;

storeDist = distanct; //填充临时储存值
storePath = pathway;

for(i = 0; i < SIGHTS; ++i) //通过遍历,查找景点名称对应的编号
{
if(start == SightInfo[i].sname)
start1 = SightInfo[i].index;
if(end == SightInfo[i].sname)
end1 = SightInfo[i].index;
}

for(i = 0; i < SIGHTS; i++) //算法核心步骤
{
if(connect[start1][i] != 0)
{
if(i==end1) //如果找到了一条路径,则保存之
{
distanct += DISTANCE[start1][end1];
for(j = 0; j < SIGHTS; ++j)
{
if(end1==SightInfo[j].index)
target = SightInfo[j].sname;
}
pathway += target;
results.insert(make_pair(distanct, pathway)); //保存结果路径信息

distanct = storeDist; //恢复数据供下次使用
pathway = storePath;
}
else //分支路径
{
for(j = 0; j < SIGHTS; ++j)
{
if(i==SightInfo[j].index)
temp = SightInfo[j].sname;
}
pathway += temp;
pathway += "=>";
distanct += DISTANCE[start1][i];

Find_Ways(temp, end, distanct, pathway, count); //以该连通的分支
//路径继续递归调用,查找子层路径信息。

distanct = storeDist; //恢复数据
pathway = storePath;
}
}
}
}

void Find_Best_Way()
{ //该函数建立在上述函数执行完毕之后,在map映射结构中通过对比每条路径的长度,来
//选择最优解
map<int, string>::iterator itor = results.begin();

while(itor!=results.end()) //寻找最小值
{
// cout<<"distanct = "<<itor->first<<endl;
if(itor->first < MinDistanct)
MinDistanct = itor->first;
itor++;
}

itor = results.begin();

while(itor!=results.end()) //寻找最小值所对应的整个路径字符串
{
if(itor->first == MinDistanct)
Best_Path = itor->second;
itor++;
}
}

int main(int argc, char *argv[])
{
int choice;
size_t t1=0,t2=0;
string source, termination;

InitSights();

do{
cout<<"////////////////////////////////////////////////////////\n"
<<"**** 请输入您所需要的服务号码: ********\n"
<<"**** 1.枫林园介绍 ********\n"
<<"**** 2.蛟桥园介绍 ********\n"
<<"**** 3.青山园介绍 ********\n"
<<"**** 4.麦庐园介绍 ********\n"
<<"**** 5.查询地图路径 ********\n"
<<"**** 6.退出查询系统 ********\n"
<<"////////////////////////////////////////////////////////\n"
<<endl;

cin>>choice;

switch(choice)
{
case 1:
cout<<sights[0].Sight_Name()<<endl
<<sights[0].Sight_detial()<<endl;
break;

case 2:
cout<<sights[1].Sight_Name()<<endl
<<sights[1].Sight_detial()<<endl;
break;

case 3:
cout<<sights[2].Sight_Name()<<endl
<<sights[2].Sight_detial()<<endl;
break;

case 4:
cout<<sights[3].Sight_Name()<<endl
<<sights[3].Sight_detial()<<endl;
break;

case 5:
flag1:
cout<<"请输入路径的起点"<<endl;
cin>>source;
cout<<"请输入路径的终点"<<endl;
cin>>termination;

if((t1=Sight_Names.find(source,t1))==string::npos || (t2=Sight_Names.find(termination,t2))==string::npos)
{ //检查输入的数据是否含有非法字符
cerr<<"输入的路径结点不存在,请重新输入:"<<endl;
goto flag1;
}
Find_Ways(source, termination, 0, "",0); //寻找所有可能解
Find_Best_Way(); //在所有可能解中找到最优解

cout<<"最佳路径是:"<< Best_Path <<endl
<<"最小路程为(米):"<< MinDistanct<<endl;

t1 = 0; //恢复字符串下标,以支持下次查询
t2 = 0;
break;

case 6:
break;

default:
cerr<<"您的选择超出了范围,请重新输入:"<<endl;
break;
}
}while(choice!=6);

system("pause");
return 0;
}

阅读全文

与最优算法步骤相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163