㈠ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
㈡ 求图像处理算法中,调整亮度、对比度、饱和度的算法!
我觉得你了解这几个调整工具的算法,还没有了解一下图层混合模式的计算方法有意义。亮度就是一幅照片中的黑白灰分布情况,对比度是亮部和暗部的差距,饱和度就是颜色纯度,前两者是灰度概念,饱和度才和颜色有关系。
而且亮度、对比度作为概念来理解,当然很有意义,但是这个调整工具PS已经把它弱化了,因为它调整太过粗放,用色阶和曲线都能更精确的实现。
㈢ OpenCV C++(四)----对比度增强
对比度增强或者称为对比度拉伸就是图像增强技术的一种,它主要解决由于图像的灰度级范围较小造成的对比度较低的问题,目的就是将输出图像的灰度级放大到指定的程度,使得图像中的细节看起来更加清晰。对比 度增强有几种常用的方法,如线性变换、分段线性变换、伽马变换、直方图正规化、直方图均衡化、局部自适应直方图均衡化等。
灰度直方图是图像灰度级的函数, 用来描述每个灰度级在图像矩阵中的像素个数或者占有率(概率)。
OpenCV提供了函数 calcHist 来实现直方图的构建,但是在计算8位图的灰度直方图 时,它使用起来略显复杂。下面是OpenCV源码
可以定义函数 calcGrayHist 来计算灰度直方图,其中输入参数为8位图,将返回的灰度直方图存储为一个1行256列的 Mat 类型。
图像对比度是通过灰度级范围来度量的,而灰度级范围可通过观察灰度直方图得到,灰度级范围越大代表对比度越高;反之,对比度越低,低对比度的图像在视觉上给人的感觉是看起来不够清晰,所以通过算法调整图像的灰度值,从而调整图像的对比度是有必要的。最简单的一种对比度增强方法是通过灰度值的线性变换来实现的。
当a=1,b=0时,O为I的一个副本;如果a>1,则输出图像O的对 比度比I 有所增大;如果0<a< 1,则O的对比度比I有所减小。而b值的改变,影响的是输出图像的亮度,当b> 0时,亮度增加;当b<0时,亮度减小。
在OpenCV中实现一个常数与矩阵相乘有多种方式。
1、convertTo
注:当输出矩阵的数据类型是 CV_8U 时, 大于255的值会自动截断为255
2、矩阵乘法运算
使用乘法运算符“*”, 无论常数是什么数据类型, 输出矩阵的数据类型总是和输入矩阵的数据类型相同,当数据类型是 CV_8U 时,在返回值中将大于255的值自动截断为255。
3、convertScaleAbs
直方图正规化是一种自动选取a和b的值的线性变换方法。
利用 minMaxLoc 函数不仅可以计算出矩阵中的最大值和最小值, 而且可以求出最大 值的位置和最小值的位置。 当然,
在使用过程中如果只想得到最大值和最小值, 则将其 他的变量值设为 NULL 即可。
OpenCV提供的函数: normalize()
使用函数 normalize 对图像进行对比度增强时, 经常令参数 norm_type=NORM_MINMAX , 和直方图正规化原理详解中提到的计算方法是相同的, 参数 alpha 相当于 Omax , 参数 beta 相当于 Omin 。 注意, 使用 normalize 可以处理多通道矩阵, 分别对每一个通道进行正规化操作。
非线性变换 。
假设输入图像为I,宽为W、 高为H,首先将其灰度值归一化到[0,1]范围,对于8位 图来说,除以255即可。 I (r, c) 代表归一化后的第r行第c列的灰度值, 输出图像记为 O, 伽马变换就是令 O(r, c) =I(r, c) γ , 0≤r<H, 0≤c< W,
当γ=1时, 图像不变。 如果图像整体或者感兴趣区域较暗, 则令0< γ< 1可以 增加图像对比度; 相反, 如果图像整体或者感兴趣区域较亮, 则令γ>1可以降低图像对比度。
伽马变换在提升对比度上有比较好的效果, 但是需要手动调节γ值。
全局直方图均衡化操作是对图像I进行改变, 使得输出图像O的灰度直方图 hist O 是“平”的, 即每一个灰度级的像素点个数是“相等”的。 注意,其实这里的“相等”不是严格意义上的等于, 而是约等于,
上述分别为I和O的累加直方图
总结,对于直方图均衡化的实现主要分四个步骤:
OpenCV实现的直方图均衡化函数 equalize-Hist , 其使用方法很简单, 只支持对 8位图 的处理。
虽然全局直方图均衡化方法对提高对比度很有效,但是均衡化处理以后暗区域的噪声可能会被放大,变得清晰可 见,而亮区域可能会损失信息。为了解决该问题, 提出了自适应直方图均衡化(Aptive Histogram Equalization) 方法。
自适应直方图均衡化首先将图像划分为不重叠的区域块(tiles) ,然后对每一个块分别进行直方图均衡化。 显然, 在没有噪声影响的情况下, 每一个小区域的灰度直方图会被限制在一个小的灰度级范围内; 但是如果有噪声, 每一个分割的区域块执行直方图均衡化后, 噪声会被放大。为了避免出现噪声这种情况, 提出了“限制对比度”(Contrast Limiting) [3],如果直方图的bin超过了提前预设好的“限制对比度”, 那么会被裁减, 然 后将裁剪的部分均匀分布到其他的bin, 这样就重构了直方图。
OpenCV提供的函数 createCLAHE 构建指向 CLAHE 对象的指针, 其中默认设置“限制 对比度”为40,块的大小为8×8。
㈣ 图像处理的算法有哪些
图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
1.二值化操作
图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
2.直方图处理
直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。
3.模板卷积运算
模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。