㈠ 蚁群优化算法的使用-编码的问题!
“蚁群算法”学习包下载
下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)
近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。
如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。
以下是文件列表,全是 PDF 格式的:
基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统
㈡ 在做用蚁群优化算法在道路拥堵的情况下寻找最短路径的项目,该如何在蚁群算法的网络图中删去拥堵路段
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
原理
设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?
㈢ 蚁群优化的内容提要
通过对蚂蚁复杂的社会行为的研究.科学家们发现基于其行为模式的模型可以用来求解复杂的组合优化问题。为了解决计算机科学中的最短路径问题,基于蚂蚁行为特征所发展起来的算法演变成一个被广泛认可并非常成功的新的研究领域--蚁群优化(ACO)。本书从理论和实际应用两方面介绍了这个迅速发展的领域。
本书首先介绍了如何将蚂蚁的行为转换成有效的优化算法,然后介绍蚁群元启发式算法及其在组合优化中的应用。随后介绍了主要的ACO算法并给出了最新的理论进展。书中综述了当前的ACO应用,包括路由问题、任务委派、调度安排、子集问题、机器学习和生物信息学问题等,详细描述了用于网络路由的蚁网蚁群优化算法AntNet。最后,对该领域的研究进展进行了总结,并给出了未来的研究方向。书中每一章都给出了建议阅读的参考书目、章节重点和练习题目。
㈣ 蚁群算法与遗传算法的区别
都属于智能优化算法
但是蚁群算法具有一定的记忆性,遗传算法没有
蚁群算法有几种原则,比如觅食原则,避障原则等,遗传算法没有
蚁群算法属于群智能优化算法,具有并行性,每个粒子都可以主动寻优,遗传算法不行
蚁群算法基于信息素在环境中的指示,遗传算法是基于优胜劣汰的生物进化思想
遗传算法有选择,交叉,变异三种算子,每种算子又有各自的不同方法,通过对算子方法的修改和搭配,可以得到不同的改进遗传算法
蚁群算法则多和其他智能算法相结合,得到改进的蚁群算法
㈤ 导师叫我搞优化算法(蚁群、神经、退火之类的),感觉没什么实际用处,以后就业怎样
如果你胆敢跟导师说:你搞的这个东西没用,俺不干,你自己玩去吧。我保证你就业不怎么样
㈥ 现在模拟退火算法、粒子群优化算法、遗传算法和蚁群优化算法现在用的还多吗
我是人工智能的小白,不能告诉你这几个算法是否是人工智能,不过碰巧多年前学习优化算法时,接触过这些算法。在这里分享几个关于算法的故事吧。
货郎担问题
有个快递小哥要跑遍全城送货,您打算帮他规划一条最短的路线。该怎么做呢,最直接的办法是穷举法。罗列出所有可能的线路,计算出每条线路的距离,寻求最短的路径。看起来很简单吧。可是在实际的路网上,路线组合是非常多的。如果有15个目的地,组合的数量至少是15的阶乘。更何况还要考虑路况,收费免费,时间段等各种条件的组合,这样的计算量恐怕是量子计算机也不能在可接受的时间里完成。这象是对条件不足多元方程组求解,要从无穷多的解中找出最接近期望值的解。于是,人们想出了许多快速逼近最优解的办法。
蚂蚁算法
蚂蚁出来觅食时,先是向四面八方出动,发现食物的蚂蚁会掉头回来通知其它的蚂蚁。接到通知的蚂蚁就会向食物的方向移动。蚂蚁移动时会在路线上留下气味。这样在通向食物的路线上气味就越来越浓,后面的蚂蚁不用直接接到信息,只要追着最浓的气味就可以找到食物。人们受到这个现象的启发,设立出来先按随机条件计算,在小范围内找到局部最优解之后,就为这些条件加分。一定时间后就围绕着分数高的条件计算,不断反复后得到的解被当作近似最优解。这就是蚂蚁算法的原理。
神经网络
和蚂蚁算法类似,人的记忆是通过神经元的突出建立起联系实现的。类似的刺激会使联系增强。达到一定刺激量之后,就可以形成长久的记忆。模仿这一过程,人们把各种约束条件当作神经元,随机选取路线,输入各种条件,当路径倾向于缩短时,就按照权重给各条件加分,反之就给条件减分,然后,根据分数,以最有利于优化的条件为主重新选择路线,反复该过程直到达到边界条件时,就认为得到了近似最优解。遗传算法,模拟退火算法,也都是用一定的方法,缩小计算范围,通过求局部最优解逼近最优解的。就不啰嗦了。
人工智能和优化算法
优化算法实际上是从早期人工智能的研究发展起来的,从这个意义上说,这些算法也可以说是人工智能吧。
㈦ 蚁群和粒子群优化算法进行图像配准哪个好
两种方法都是可以解决这类优化问题,一般而言用粒子群优化算法会在速度上快些。不过无论采用哪一种,都是要经过一定的问题性改性。
㈧ 经典的网络优化算法跟智能算法,哪个跟好些譬如Dijkstra算法和蚁群算法。
Dijkstra算法和蚁群算法是有着本质不同的,属于两个范畴了,前者是确定性算法,输入一个图,必定能产生一个可行结果。而后者是属于启发式算法,有随机因素。不一定能产生好的结果,但一般情况下由于存在启发式因素和智能因素,能够产生比较好的结果,但不能保证产生全局最优解。况且前者是一个针对性很强的算法,只能用于最短路径计算,而蚁群算法可以用来解决一大类问题,比如图算法、数值优化、数据挖掘等等。
㈨ 蚁群优化算法的介绍
本书围绕蚁群算法这一来自昆虫世界的优化思想,对其基本原理、核心步骤及其在最优化相关领域的实现作了详细介绍。