1. 什么是编译器
简单讲,编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 → 预处理器 → 编译器 → 目标代码 → 链接器→ 可执行程序。
2. x86与ARM架构下的编译器的区别
ARM是简单指令集。。。 指令集长度短
3. 编译器是什么意思
简单讲,编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 目标代码 (object code) → 链接器 (Linker) → 可执行程序 (executables)
高级计算机语言便于人编写,阅读交流,维护。机器语言是计算机能直接解读、运行的。编译器将汇编或高级计算机语言源程序(Source program)作为输入,翻译成目标语言(Target language)机器代码的等价程序。源代码一般为高级语言 (High-level language), 如Pascal、C、C++、Java、汉语编程等或汇编语言,而目标则是机器语言的目标代码(Object code),有时也称作机器代码(Machine code)。
对于C#、VB等高级语言而言,此时编译器完成的功能是把源码(SourceCode)编译成通用中间语言(MSIL/CIL)的字节码(ByteCode)。最后运行的时候通过通用语言运行库的转换,编程最终可以被CPU直接计算的机器码(NativeCode)。
4. 编译软件属于________。
系统软件
编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) →预处理器(preprocessor) → 编译器 (compiler) →目标代码(object code) →链接器(Linker) → 可执行程序(executables)
(4)现代编译器的架构风格扩展阅读:
典型的编译器输出是由包含入口点的名字和地址, 以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的EXE,所以我们电脑上的文件都是经过编译后的文件。
5. 编译器的发展史
编译器
编译器,是将便于人编写,阅读,维护的高级计算机语言翻译为计算机能识别,运行的低级机器语言的程序。编译器将源程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源程序一般为高级语言(High-level language),如Pascal,C++等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。
一个现代编译器的主要工作流程如下:
源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables)
目录 [隐藏]
1 工作原理
2 编译器种类
3 预处理器(preprocessor)
4 编译器前端(frontend)
5 编译器后端(backend)
6 编译语言与解释语言对比
7 历史
8 参见
工作原理
翻译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
编译语言与解释语言对比
许多人将高级程序语言分为两类: 编译型语言 和 解释型语言 。然而,实际上,这些语言中的大多数既可用编译型实现也可用解释型实现,分类实际上反映的是那种语言常见的实现方式。(但是,某些解释型语言,很难用编译型实现。比如那些允许 在线代码更改 的解释型语言。)
历史
上世纪50年代,IBM的John Backus带领一个研究小组对FORTRAN语言及其编译器进行开发。但由于当时人们对编译理论了解不多,开发工作变得既复杂又艰苦。与此同时,Noam Chomsky开始了他对自然语言结构的研究。他的发现最终使得编译器的结构异常简单,甚至还带有了一些自动化。Chomsky的研究导致了根据语言文法的难易程度以及识别它们所需要的算法来对语言分类。正如现在所称的Chomsky架构(Chomsky Hierarchy),它包括了文法的四个层次:0型文法、1型文法、2型文法和3型文法,且其中的每一个都是其前者的特殊情况。2型文法(或上下文无关文法)被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。分析问题(parsing problem,用于上下文无关文法识别的有效算法)的研究是在60年代和70年代,它相当完善的解决了这个问题。现在它已是编译原理中的一个标准部分。
有限状态自动机(Finite Automaton)和正则表达式(Regular Expression)同上下文无关文法紧密相关,它们与Chomsky的3型文法相对应。对它们的研究与Chomsky的研究几乎同时开始,并且引出了表示程序设计语言的单词的符号方式。
人们接着又深化了生成有效目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其称为优化技术(Optimization Technique),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(Code Improvement Technique)。
当分析问题变得好懂起来时,人们就在开发程序上花费了很大的功夫来研究这一部分的编译器自动构造。这些程序最初被称为编译器的编译器(Compiler-compiler),但更确切地应称为分析程序生成器(Parser Generator),这是因为它们仅仅能够自动处理编译的一部分。这些程序中最着名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年为Unix系统编写的。类似的,有限状态自动机的研究也发展了一种称为扫描程序生成器(Scanner Generator)的工具,Lex(与Yacc同时,由Mike Lesk为Unix系统开发)是这其中的佼佼者。
在70年代后期和80年代早期,大量的项目都贯注于编译器其它部分的生成自动化,这其中就包括了代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。
编译器设计最近的发展包括:首先,编译器包括了更加复杂算法的应用程序它用于推断或简化程序中的信息;这又与更为复杂的程序设计语言的发展结合在一起。其中典型的有用于函数语言编译的Hindley-Milner类型检查的统一算法。其次,编译器已越来越成为基于窗口的交互开发环境(Interactive Development Environment,IDE)的一部分,它包括了编辑器、连接程序、调试程序以及项目管理程序。这样的IDE标准并没有多少,但是对标准的窗口环境进行开发已成为方向。另一方面,尽管近年来在编译原理领域进行了大量的研究,但是基本的编译器设计原理在近20年中都没有多大的改变,它现在正迅速地成为计算机科学课程中的中心环节。
在九十年代,作为GNU项目或其它开放源代码项目的一部分,许多免费编译器和编译器开发工具被开发出来。这些工具可用来编译所有的计算机程序语言。它们中的一些项目被认为是高质量的,而且对现代编译理论感性趣的人可以很容易的得到它们的免费源代码。
大约在1999年,SGI公布了他们的一个工业化的并行化优化编译器Pro64的源代码,后被全世界多个编译器研究小组用来做研究平台,并命名为Open64。Open64的设计结构好,分析优化全面,是编译器高级研究的理想平台。
编译器是一种特殊的程序,它可以把以特定编程语言写成的程序变为机器可以运行的机器码。我们把一个程序写好,这时我们利用的环境是文本编辑器。这时我程序把程序称为源程序。在此以后程序员可以运行相应的编译器,通过指定需要编译的文件的名称就可以把相应的源文件(通过一个复杂的过程)转化为机器码了。
编译器工作方法
首先编译器进行语法分析,也就是要把那些字符串分离出来。然后进行语义分析,就是把各个由语法分析分析出的语法单元的意义搞清楚。最后生成的是目标文件,我们也称为obj文件。再经过链接器的链接就可以生成最后的可执行代码了。有些时候我们需要把多个文件产生的目标文件进行链接,产生最后的代码。我们把一过程称为交叉链接。
6. 现代C/C++编译器有多智能
最近在搞C/C++代码的性能优化,发现很多时候自以为的优化其实编译器早就优化过了,得结合反汇编才能看出到底要做什么样的优化。
请熟悉编译器的同学结合操作系统和硬件谈一谈现代c/c++编译器到底有多智能吧。哪些书本上的优化方法其实早就过时了?
以及程序员做什么会让编译器能更好的自动优化代码?
举个栗子:
1,循环展开,大部分编译器设置flag后会自动展开;
2,顺序SIMD优化,大部分编译器设置flag后也会自动优化成SIMD指令;
3,减少中间变量,大部分编译器会自动优化掉中间变量;
etc.
查看代码对应的汇编:
Compiler Explorer
【以下解答】
举个之前看过的例子:
int calc_hash(signed char *s){ static const int N = 100003; int ret = 1; while (*s) { ret = ret * 131 + *s; ++ s; } ret %= N; if (ret < 0) ret += N; //注意这句 return ret;}
【以下解答】
举个简单例子,一到一百求和
#include int sum() { int ret= 0; int i; for(i = 1; i <= 100; i++) ret+=i; return ret;}int main() { printf("%d\n", sum()); return 0;}
【以下解答】
话题太大,码字花时间…
先放传送门好了。
请看Google的C++编译器组老大Chandler Carruth的演讲。这个演讲是从编译器研发工程师的角度出发,以Clang/LLVM编译C++为例,向一般C++程序员介绍理解编译器优化的思维模型。它讲解了C++编译器会做的一些常见优化,而不会深入到LLVM具体是如何实现这些优化的,所以即使不懂编译原理的C++程序员看这个演讲也不会有压力。
Understanding Compiler Optimization - Chandler Carruth - Opening Keynote Meeting C++ 2015
演示稿:https://meetingcpp.com/tl_files/mcpp/2015/talks/meetingcxx_2015-understanding_compiler_optimization_themed_.pdf
录像:https://www.youtube.com/watch?v=FnGCDLhaxKU(打不开请自备工具…)
Agner Fog写的优化手册也永远是值得参考的文档。其中的C++优化手册:
Optimizing software in C++ - An optimization guide for Windows, Linux and Mac platforms - Agner Fog
要稍微深入一点的话,GCC和LLVM的文档其实都对各自的内部实现有不错的介绍。
GCC:GNU Compiler Collection (GCC) Internals
LLVM:LLVM’s Analysis and Transform Passes
========================================
反模式(anti-patterns)
1. 为了“优化”而减少源码中局部变量的个数
这可能是最没用的手工“优化”了。特别是遇到在高级语言中“不用临时变量来交换两个变量”这种场景的时候。
看另一个问题有感:有什么像a=a+b;b=a-b;a=a-b;这样的算法或者知识? - 编程
2. 为了“优化”而把应该传值的参数改为传引用
(待续…)
【以下解答】
推荐读一读这里的几个文档:
Software optimization resources. C++ and assembly. Windows, Linux, BSD, Mac OS X
其中第一篇:http://www.agner.org/optimize/optimizing_cpp.pdf
讲解了C++不同领域的优化思路和问题,还有编译器做了哪些优化,以及如何代码配合编译器优化。还有优化多线程、使用向量指令等的介绍,推荐看看。
感觉比较符合你的部分需求。
【以下解答】
一份比较老的slides:
http://www.fefe.de/source-code-optimization.pdf
【以下解答】
利用C++11的range-based for loop语法可以实现类似python里的range生成器,也就是实现一个range对象,使得
for(auto i : range(start, stop, step))
【以下解答】
我觉得都不用现代。。。。寄存器分配和指令调度最智能了
【以下解答】
每次编译poco库的时候我都觉得很为难GCC
【以下解答】
有些智能并不能保证代码变换前后语义是等价的
【以下解答】
诶诶,我错了各位,GCC是可以借助 SSE 的 xmm 寄存器进行优化的,经 @RednaxelaFX 才知道应该添加 -march=native 选项。我以前不了解 -march 选项,去研究下再来补充为什么加和不加区别这么大。
十分抱歉黑错了。。。以后再找别的点来黑。
误导大家了,实在抱歉。(??ˇ?ˇ??)
/*********以下是并不正确的原答案*********/
我是来黑 GCC的。
最近在搞编译器相关的活,编译OpenSSL的时候有一段这样的代码:
BN_ULONG a0,a1,a2,a3; // EmmetZC 注:BN_ULONG 其实就是 unsigned longa0=B[0]; a1=B[1]; a2=B[2]; a3=B[3];A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3;
【以下解答】
提示:找不到对象
【以下解答】
忍不住抖个机灵。
私以为正常写代码情况下编译器就能优化,才叫智能编译器。要程序员绞尽脑汁去考虑怎么写代码能让编译器更好优化,甚至降低了可读性,那就没有起到透明屏蔽的作用。
智能编译器应该是程序猿要较劲脑汁才能让编译器不优化。
理论上是这样的。折叠我吧。
【以下解答】
编译器智能到每次我都觉得自己很智障。
【以下解答】
虽然题主内容里是想问编译器代码性能优化方面的内容,但题目里既然说到编译器的的智能,我就偏一下方向来说吧。
有什么更能展示编译器的强大和智能?
自然是c++的模版元编程
template meta programming
简单解释的话就是写代码的代码,写的还是c++,但能让编译器在编译期间生成正常的c++代码。
没接触过的话,是不是听上去感觉就是宏替换的加强版?感觉不到它的强大呢?
只是简单用的话,效果上这样理解也没什么
但是一旦深入下去,尤其翻看大神写的东西,这明明看着就是c++的代码,但TM怎么完全看不懂他在干什么?后来才知道这其实完全是另外一个世界,可是明明是另外一个世界的东西但它又可以用来做很多正常c++能做的事....
什么?你说它好像不能做这个,不能做那个,好像做不了太多东西,错了,大错特错。就像你和高手考试都考了100分的故事一样,虽然分数一样,但你是努力努力再努力才得了满分,而高手只是因为卷面分只有100分.....在元编程面前,只有想不到,没有做不到。
再回头看看其他答案,编译器顺手帮你求个和,丢弃下无用代码,就已经被惊呼强大了,那模板元编程这种几乎能在编译期直接帮你“生成”包含复杂逻辑的c++代码,甚至还能间接“执行”一些复杂逻辑,这样的编译器是不是算怪兽级的强大?
一个编译器同时支持编译语法相似但结果不同却又关联的两种依赖语言,这个编译器有多强大多智能?
写的人思维都要转换几次,编译器转着圈嵌着套翻着番儿地编译代码的代码也肯定是无比蛋疼的,你说它有多强大多智能?
一个代码创造另外一个代码,自己能按照相似的规则生成自己,是不是听上去已经有人工智能的发展趋势了?
上帝说,要有光,于是有了光。
老子曰,一生二,二生三,三生万物。
信c++,得永生!
===
FBI WARNING:模板元编程虽然很强大,但也有不少缺点,尤其对于大型项目,为了你以及身边同事的身心健康,请务必适度且谨慎的使用。勿乱入坑,回头是岸。
【以下解答】
c++11的auto自动类型推断算么....
【以下解答】
智能到开不同级别的优化,程序行为会不同 2333
【以下解答】
这个取决于你的水平
7. C语言的各类编译系统的特点
你是不是问的各类编译器??如果是编译器的话请往下看,不是的话请忽略,工中号一匹大懒虫
C语言编译器目前主要有VC++、dev-C++、C-Free、win-TC、TC 2.0等等。
其中比较经典的VC++,微软的产品,编译器,链接器,运行,调试等功能于一体的强大开发工具,特点是功能十分强大,对于新手来说需要一段时间去摸索。
dev-C++是windows下一款开发c/c++的开发环境,使用gcc为编译器,遵循标准,功能比较强大,语法高量,可以进行单步调试(这对排除错误很重要),进行断点设置等功能,遵循C标准,是一款很强大的开发工具。
C-Free是一款支持多种编译器的专业化C/C++集成开发环境(IDE)。利用C-Free,使用者可以轻松地编辑、编译、连接、运行、调试C/C++程序。
TC 2.0:Borland公司的产品,在dos界面下编译运行,小巧、灵活,但是不能使用鼠标。
win-TC:在tc2.0的基础上加上了界面,能够使用鼠标,具有语法高量,可以嵌入汇编等特点,对新手一些,拜托了不能用鼠标的困难。
编译器,简单讲,就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) 预处理器 (preprocessor) 编译器 (compiler) 目标代码 (object code) 链接器(Linker) 可执行程序 (executables)。
8. 编译器有什么用
简单讲,编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 目标代码 (object code) → 链接器(Linker) → 可执行程序 (executables)
高级计算机语言便于人编写,阅读交流,维护。机器语言是计算机能直接解读、运行的。编译器将汇编或高级计算机语言源程序(Source program)作为输入,翻译成目标语言(Target language)机器代码的等价程序。源代码一般为高级语言 (High-level language), 如Pascal、C、C++、Java、汉语编程等或汇编语言,而目标则是机器语言的目标代码(Object code),有时也称作机器代码(Machine code)。
对于C#、VB等高级语言而言,此时编译器完成的功能是把源码(SourceCode)编译成通用中间语言(MSIL/CIL)的字节码(ByteCode)。最后运行的时候通过通用语言运行库的转换,编程最终可以被CPU直接计算的机器码(NativeCode)。