导航:首页 > 源码编译 > matlab图像聚类算法

matlab图像聚类算法

发布时间:2023-06-11 09:34:18

⑴ 如何编写求K-均值聚类算法的Matlab程序

在聚类分析中,K-均值聚类算法(k-means
algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
下面介绍作者编写的一个分两类的程序,可以把其作为函数调用。
%%
function
[samp1,samp2]=kmeans(samp);
作为调用函数时去掉注释符
samp=[11.1506
6.7222
2.3139
5.9018
11.0827
5.7459
13.2174
13.8243
4.8005
0.9370
12.3576];
%样本集
[l0
l]=size(samp);
%%利用均值把样本分为两类,再将每类的均值作为聚类中心
th0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for
i=1:lif
samp(i)<th0
c1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2;
%初始聚类中心t=0;cl1=c1;cl2=c2;
c11=c1;c22=c2;
%聚类中心while
t==0samp1=zeros(1,l);
samp2=samp1;n1=1;n2=1;for
i=1:lif
abs(samp(i)-c11)<abs(samp(i)-c22)
samp1(n1)=samp(i);
cl1=cl1+samp(i);n1=n1+1;
c11=cl1/n1;elsesamp2(n2)=samp(i);
cl2=cl2+samp(i);n2=n2+1;
c22=cl2/n2;endendif
c11==c1
&&
c22==c2t=1;endcl1=c11;cl2=c22;
c1=c11;c2=c22;
end
%samp1,samp2为聚类的结果。
初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值。
k-均值算法需要事先知道分类的数量,这是其不足之处。

⑵ MATLAB高手请帮帮小弟 现有MATLAB难题如下:

对图像加入高斯白噪声,参考以下函数:
AWGN:在某一信号中加入高斯白噪声
y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。辩搏如果POWERTYPE是'顷灶唤dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%自编的均值滤波函数。x是需要滤波的图像,n是模板大小(即n×n)
function d=avefilt(x,n)
a(1:n,1:n)=1; %a即n×n模板,元素全是1
p=size(x); %输入图像是p×q的,且p>n,q>n
x1=double(x);
x2=x1;
%A(a:b,c:d)表示A矩阵的第a到b行,第c到d列的所有元素
for i=1:p(1)-n+1
for j=1:p(2)-n+1
c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘
s=sum(sum(c)); %求c矩阵(即模板)中各元素之和
x2(i+(n-1)/2,j+(n-1)/2)=s/(n*n); %将模板各元素的均值赋给模板中心位置的元素
end
end
%未被赋值的元素取原值
d=uint8(x2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HCM是硬C均值算法,FCM为模糊C均值算法,由HCM发展而来。雀凯
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;

if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!');
end

data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度
% 默认操作参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志

if nargin == 2,
options = default_options;
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option;
if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!');
end
end
%将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end

iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];

% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);

% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo ---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo; % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
dist = distfcm(center, data); % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式

% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out ---- 距离
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
调用完FCM后,得到的U矩阵就是聚类结果,然后根据U矩阵对原图像进行赋值,即可得到分割结果。

⑶ MATLAB中图形轮廓提取的C均值聚类算法FCM出错,用其他图片就可以出结果,换成医学图片就不行了

医学图片的数据结构与一般的图片不一样,须专门编程

⑷ matlab 聚类算法silhouette

~的意思的无视这个项,仅生成h。

snapnaw,拍摄图像快照以包括在发布文档中。代码中没有涉及发布文档,所以没有显示。

参考网页网页链接

⑸ 怎么用Matlab计算聚类算法的正确率问题

我把K-mediods的matlab代码贴出来,你好好学习一下
function label = kmedoids( data,k,start_data )
% kmedoids k中心点算法函数
% data 待聚类的数据集,每一行是一个样本数据点
% k 聚类个数
% start_data 聚类初始中心值,每一行为一个中心点,有cluster_n行
% class_idx 聚类结果,每个样本点标记的类别
% 初始化变量
n = length(data);
dist_temp1 = zeros(n,k);
dist_temp2 = zeros(n,k);
last = zeros(n,1);
a = 0;
b = 0;
if nargin==3
centroid = start_data;
else
centroid = data(randsample(n,k),:);
end
for a = 1:k
temp1 = ones(n,1)*centroid(a,:);
dist_temp1(:,a) = sum((data-temp1).^2,2);
end
[~,label] = min(dist_temp1,[],2);
while any(label~=last)
for a = 1:k
temp2 = ones(numel(data(label==a)),1);
temp3 = data(label==a);
for b = 1:n
temp4 = temp2*data(b,:);
temp5 = sum((temp3-temp4).^2,2);
dist_temp2(b,a) = sum(temp5,1);
end
end
[~,centry_indx] = min(dist_temp2,[],1);
last = label;
centroid = data(centry_indx,:);
for a = 1:k
temp1 = ones(n,1)*centroid(a,:);
dist_temp1(:,a) = sum((data-temp1).^2,2);
end
[~,label] = min(dist_temp1,[],2);
end
end

⑹ 有谁用matlab做过聚类算法

分类算法,参数分别为G(相似度矩阵),r(邻居门限),lambda(类门限),返回值A,一个cell数组,每个元素是一个向量,包含了一个类的所有元素。
function A=BFSN_Algorithm(G,r,lambda)
%广度优先搜索邻居的聚类算法实现
%G为相似度矩阵
%r和lambda为参数
%r为邻居门限,相似度大于r即为邻居
%lambda门限
%未分类元素对于某类的所有元素,如果是邻居则令X(i)=1,否则为0.i为类元素的下标
%对X求和并除以类元素个数,若此值大于lambda门限,则该未分类元素属于这类
%打开计时器
tic
%A为聚类结果
A={};
%k为分类计数
k=1;
%n为待分类元素个数
n=size(G,1);
%构建元素向量
member=1:n;
%只要member中还有未分类的元素就继续循环
while numel(member)~=0
%从member中取出一个元素a
a=member(1);
%新建空类A并将a送入Ak类
Ak=a;
%从member中删除a
member(1)=[];
%扫描member中的所有元素
%queue为广度优先搜索使用的队列
%将a送入queue中
queue=a;
%已访问过的元素
visited=zeros(1,n);
%如果队列非空说明还有没有检验过的邻居
while numel(queue)~=0
%一个元素出队
p=queue(1);
queue(1)=[];
%扫描member中所有元素
for count=1:numel(member)
%用member(count)作为待分类的元素
%p是从queue中取出,找到p的所有未访问邻居
if G(p,member(count))>r && visited(member(count))==0
%满足if的member(count)是未访问过的邻居
%放入queue中
queue=[queue member(count)];
%member(count)已经访问过了
visited(member(count))=1;
if sum(G(member(count),Ak)>r)/numel(Ak)>=lambda
%满足if的元素属于Ak类,根据lambda门限判断
Ak=[Ak member(count)];
member(count)=-1;
end
end
end
%删除member中已分类的元素
member(member==-1)=[];
end
%将Ak保存在cell数组A的第k个位置
A{k}=Ak;
%k指向下一个分类
k=k+1;
end
%关闭计时器
toc
由于编写的时候比较仓促,应该有很大的优化的余地。
plotAllClass.m
绘制已分类数据的图形,参数:data元素数据,A分类表,一个cell数组,调用BFSN_Algorithm得到。
function plotAllClass(data,A)
%data:m行2列的矩阵,m行代表m个元素,
%第一列为每个元素的横坐标
%第二列为每个元素的纵坐标
%A为分类列表,
%有c个元素的cell数组
%每个元素是一个向量
%包含了一个分类的所有元素在data中的行
%n=类别数
n=numel(A);
%绘图图案列表
style=['r*';'g*';'b*';'c*';'m*';'y*';'k*';...
'r+';'g+';'b+';'c+';'m+';'y+';'k+';...
'rs';'gs';'bs';'cs';'ms';'ys';'ks';...
'rp';'gp';'bp';'cp';'mp';'yp';'kp';...
'rh';'gh';'bh';'ch';'mh';'yh';'kh';...
'rd';'gd';'bd';'cd';'md';'yd';'kd';...
'ro';'go';'bo';'co';'mo';'yo';'ko';...
'rx';'gx';'bx';'cx';'mx';'yx';'kx';...
'rv';'gv';'bv';'cv';'mv';'yv';'kv';...
'r<';'g<';'b<';'c<';'m<';'y<';'k<';...
'r>';'g>';'b>';'c>';'m>';'y>';'k>';...
'r^';'g^';'b^';'c^';'m^';'y^';'k^';...
'r.';'g.';'b.';'c.';'m.';'y.';'k.'];
figure;
hold on;
for count=1:n
plot(data(A{count},1),data(A{count},2),style(count,:));
end
hold off;
这个函数最多能够绘制91个类别,如果有超过91个类,函数会出错。
show.m
包含了一个完整的流程,包括数据生成,相似度矩阵生成,分类,类别绘制。
%show.m
data=rand(200,2);
figure;
plot(data(:,1),data(:,2),'+');
G=createSimiR(data);
A=BFSN_Algorithm(G,0.95,0.95);
plotAllClass(data,A);

⑺ matlab中聚类算法

建议你直接使用命令clusterdata()
程序如下:
x=[1 2 3 34 44 78 5 6 3 0.2 34 56 67 ]';
>> T=clusterdata(x,'maxclust',2)

T =

1
1
1
2
2
2
1
1
1
1
2
2
2
结果解释:T值为1的表示为第一类,2的表示为第二类;即1 2 3 5 6 3 0.2为第一类,其余的为第二类。

⑻ 聚类算法matlab语言怎么叙述

聚类算法1. 划分法(partitioning methods):给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法; 2. 层次法(hierarchical methods):这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;

⑼ matlab图像聚类分割算法 求大神告知以下代码是用了什么方法还有怎么把图像分割和聚类算法结合在一起。

用了K均值聚类算法,即求特征点到两个聚类中心的距离,哪个小就将他归于哪一类中,即D1和D2

阅读全文

与matlab图像聚类算法相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163