导航:首页 > 源码编译 > pythonsklearn聚类算法

pythonsklearn聚类算法

发布时间:2023-06-11 10:16:23

python怎么用sklearn包进行聚类

#-*-coding:utf-8-*-
fromsklearn.clusterimportKMeans
fromsklearn.externalsimportjoblib
importnumpy

final=open('c:/test/final.dat','r')

data=[line.strip().split(' ')forlineinfinal]
feature=[[float(x)forxinrow[3:]]forrowindata]

#调用kmeans类
clf=KMeans(n_clusters=9)
s=clf.fit(feature)
prints

#9个中心
printclf.cluster_centers_

#每个样本所属的簇
printclf.labels_

#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
printclf.inertia_

#进行预测
printclf.predict(feature)

#保存模型
joblib.mp(clf,'c:/km.pkl')

#载入保存的模型
clf=joblib.load('c:/km.pkl')

'''
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
foriinrange(5,30,1):
clf=KMeans(n_clusters=i)
s=clf.fit(feature)
printi,clf.inertia_
'''

㈡ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型

-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。

随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变

Figure 1

K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。

技术路线:
sklearn.cluster.Kmeans

数据实例:

㈢ 谱聚类(Spectral clustering)(python实现)

谱聚类概念
谱聚类是一种基于图论的聚类方法,通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据聚类的母的。谱聚类可以理解为将高维空间的数据映射到低维,然后在低维空间用其它聚类算法(如KMeans)进行聚类。

算法步骤

1 计算相似度矩阵 W
2 计算度矩阵 D
3 计算拉普拉斯矩阵L=D-W
4 计算L的特征值,将特征值从小到大排序,取前k个特征值.将这个特征值向量转换为矩阵
5 通过其他聚类算法对其进行聚类,如k-means
详细公式和概念请到 大佬博客

相比较PCA降维中取前k大的特征值对应的特征向量,这里取得是前k小的特征值对应的特征向量。但是上述的谱聚类算法并不是最优的,接下来我们一步一步的分解上面的步骤,总结一下在此基础上进行优化的谱聚类的版本。

python实现
例子一:使用谱聚类从噪声背景中分割目标

效果图

例子2:分割图像中硬币的区域

效果图

注意
1)当聚类的类别个数较小的时候,谱聚类的效果会很好,但是当聚类的类别个数较大的时候,则不建议使用谱聚类;

(2)谱聚类算法使用了降维的技术,所以更加适用于高维数据的聚类;

(3)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法(比如K-Means)很难做到

(4)谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解
(5)谱聚类对相似度图的改变和聚类参数的选择非常的敏感;

(6)谱聚类适用于均衡分类问题,即各簇之间点的个数相差不大,对于簇之间点个数相差悬殊的聚类问题,谱聚类则不适用;

参考
谱聚类算法介绍
sklearn官网

㈣ python中的sklearn中决策树使用的是哪一种算法

sklearn中决策树分为DecisionTreeClassifier和DecisionTreeRegressor,所以用的算法是CART算法,也就是分类与回归树算法(classification and regression tree,CART),划分标准默认使用的也是Gini,ID3和C4.5用的是信息熵,为何要设置成ID3或者C4.5呢

㈤ 老师让学习人工智能中常用分类和聚类算法和scilearn包的使用,请问应该怎么学习

  1. Scikit-learn

  2. Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python numerical和scientific libraries Numpy and Scipy

  3. 2.Pylearn2

  4. Pylearn是一个让机器学习研究简单化的基于Theano的库程序。

  5. 3.NuPIC

  6. NuPIC是一个以HTM学习算法为工具的机器智能。HTM是皮层的精确计算方法。HTM的核心是基于时间的持续学习算法和储存和撤销的时空模式。NuPIC适合于各种各样的问题,尤其是检测异常和预测的流数据来源。

  7. 4. Nilearn

  8. Nilearn 是一个能够快速统计学习神经影像数据的Python模块。它利用Python语言中的scikit-learn 工具箱和一些进行预测建模,分类,解码,连通性分析的应用程序来进行多元的统计。

  9. 5.PyBrain

  10. Pybrain是基于Python语言强化学习,人工智能,神经网络库的简称。 它的目标是提供灵活、容易使用并且强大的机器学习算法和进行各种各样的预定义的环境中测试来比较你的算法。

  11. 6.Pattern

  12. Pattern 是Python语言下的一个网络挖掘模块。它为数据挖掘,自然语言处理,网络分析和机器学习提供工具。它支持向量空间模型、聚类、支持向量机和感知机并且用KNN分类法进行分类。

  13. 7.Fuel

  14. Fuel为你的机器学习模型提供数据。他有一个共享如MNIST, CIFAR-10 (图片数据集), Google’s One Billion Words (文字)这类数据集的接口。你使用他来通过很多种的方式来替代自己的数据。

  15. 8.Bob

  16. Bob是一个的信号处理和机器学习的工具。它的工具箱是用Python和C++语言共同编写的,它的设计目的是变得更加高效并且减少开发时间,它是由处理图像工具,音频和处理、机器学习和模式识别的大量包构成的。

  17. 9.Skdata

  18. Skdata是机器学习和统计的数据集的库程序。这个模块对于玩具问题,流行的计算机视觉和自然语言的数据集提供标准的Python语言的使用。

  19. 10.MILK

  20. MILK是Python语言下的机器学习工具包。它主要是在很多可得到的分类比如SVMS,K-NN,随机森林,决策树中使用监督分类法。 它还执行特征选择。 这些分类器在许多方面相结合,可以形成不同的例如无监督学习、密切关系金传播和由MILK支持的K-means聚类等分类系统。

  21. 11.IEPY

  22. IEPY是一个专注于关系抽取的开源性信息抽取工具。它主要针对的是需要对大型数据集进行信息提取的用户和想要尝试新的算法的科学家。

  23. 12.Quepy

  24. Quepy是通过改变自然语言问题从而在数据库查询语言中进行查询的一个Python框架。他可以简单的被定义为在自然语言和数据库查询中不同类型的问题。所以,你不用编码就可以建立你自己的一个用自然语言进入你的数据库的系统。

  25. 现在Quepy提供对于Sparql和MQL查询语言的支持。并且计划将它延伸到其他的数据库查询语言。

  26. 13.Hebel

  27. Hebel是在Python语言中对于神经网络的深度学习的一个库程序,它使用的是通过PyCUDA来进行GPU和CUDA的加速。它是最重要的神经网络模型的类型的工具而且能提供一些不同的活动函数的激活功能,例如动力,涅斯捷罗夫动力,信号丢失和停止法。

  28. 14.mlxtend

  29. 它是一个由有用的工具和日常数据科学任务的扩展组成的一个库程序。

  30. 15.nolearn

  31. 这个程序包容纳了大量能对你完成机器学习任务有帮助的实用程序模块。其中大量的模块和scikit-learn一起工作,其它的通常更有用。

  32. 16.Ramp

  33. Ramp是一个在Python语言下制定机器学习中加快原型设计的解决方案的库程序。他是一个轻型的pandas-based机器学习中可插入的框架,它现存的Python语言下的机器学习和统计工具(比如scikit-learn,rpy2等)Ramp提供了一个简单的声明性语法探索功能从而能够快速有效地实施算法和转换。

  34. 17.Feature Forge

  35. 这一系列工具通过与scikit-learn兼容的API,来创建和测试机器学习功能。

  36. 这个库程序提供了一组工具,它会让你在许多机器学习程序使用中很受用。当你使用scikit-learn这个工具时,你会感觉到受到了很大的帮助。(虽然这只能在你有不同的算法时起作用。)

  37. 18.REP

  38. REP是以一种和谐、可再生的方式为指挥数据移动驱动所提供的一种环境。

  39. 它有一个统一的分类器包装来提供各种各样的操作,例如TMVA, Sklearn, XGBoost, uBoost等等。并且它可以在一个群体以平行的方式训练分类器。同时它也提供了一个交互式的情节。

  40. 19.Python 学习机器样品

  41. 用的机器学习建造的简单收集。

  42. 20.Python-ELM

  43. 这是一个在Python语言下基于scikit-learn的极端学习机器的实现。

㈥ 朴素贝叶斯分类算法的sklearn实现

1、背景

《机器学习实战》当中,用python根据贝叶斯公式实现了基本的分类算法。现在来看看用sklearn,如何实现。还拿之前的例子,对帖子的分类。数据如下:

补充:题目的值左边是几个人的评论,右边是评论属于侮辱类(1)、正常类(0),需要进行文本分类,且再有新的文本过来时能自动划分至0或1。

2、分类

(1)算法的准备

通过查看sklearn的训练模型函数,fit(X, Y),发现只需要准备两个参数。一个是数据的矩阵,另一个是数据的分类数组。首先就是将以上的文本转化成矩阵。

在前一章其实已经讲解过如何将文本转化成矩阵。这里将示意的再补充下。

a.首先选取所有的单词,形成列,也可理解为属性。例如:

b.其次将遍历每个文本,填满上述列的值。文本出现过列的次,填一。没有出现过填0。比如第一句就是:my dog has flea problems help please,可表示为:

同理所有的文本都可如此表示,所以就形成了一个数字的矩阵。

(2)beyes模型的选择

在完成数据的准备以后,就可以直接调用sklearn的模型和函数完成模型的训练啦。但在beyes模型的选择的时候发现,beyes下有多个模型可选择,所以这个会让人纠结。接下来共同了解下这些模型:

a.高斯模型(GaussianNB)

高斯模型是对于每个属性的值是连续的,且服从高斯分布时可使用:

比如人的身高,比如花的高度等等。当然你也可将这些数据离散化,比如按等距划分、等频划分成离散的值,但可能效果都没有直接用高斯模型来计算的好。

用法:class sklearn.naive_bayes.GaussianNB

参数:无

b.多项式模型(MultinominalNB)

如果大部分是多元离散值,则采用多项式模型要好些。多项式模型,通常就是构造参数向量,然后通过极大似然估计来寻求参数的最有值。

这里只简单的略列一些公式,具体可查询更多资料。从这个计算过程中可得出,这里引入啦一个平滑先验值alpha,这个值在模型训练的时候也会用到。通常alpha>0,可引入不在训练集的特征,尤其当alpha=1,成为拉普拉丝平滑。具体alpha取值对模型的影响可附件的图。

用法:class sklearn.naive_bayes.MultinomialNB(alpha=1.0,fit_prior=True,class_prior=None) 

参数:

alpha:浮点数,就是上述说的引入平滑的值;

fit_prior:bool值,如果为Ture,则不用去学习P(y=ck),以均匀分布替代,否则则去学习P(y=ck)(不懂)

class_prior:一个数组。它指定了每个分类的先验概率P(y=c1),P(y=c2)…..,若指定了该参数 

则每个分类的先验概率无需学习 (不懂)

c.伯努利模型(BernoulliNB)

如果特征值为二元离散值或是稀疏的多元离散值,则可采用伯努利模型。

公式:class sklearn.naive_bayes.BernoulliNB(alpha=1.0,binarize=0.0,fit_prior=Ture, 

class_prior=None) 

参数:

binarize:一个浮点数或者None,如果为浮点数则以该数值为界,特征值大于它的取1,小于的为0 。如果为None,假定原始数据已经二值化 

其它参数同上。

通过以上的模型对比和分析,由于文本分析转化后是很多二项取值的稀疏矩阵,因此选取伯努利模型效果会更佳。

补充:alpha、binarize值对模型效果的影响

㈦ python scikit-learn 有什么算法

1,前言

很久不发文章,主要是Copy别人的总感觉有些不爽,所以整理些干货,希望相互学习吧。不啰嗦,进入主题吧,本文主要时说的为朴素贝叶斯分类算法。与逻辑回归,决策树一样,是较为广泛使用的有监督分类算法,简单且易于理解(号称十大数据挖掘算法中最简单的算法)。但其在处理文本分类,邮件分类,拼写纠错,中文分词,统计机器翻译等自然语言处理范畴较为广泛使用,或许主要得益于基于概率理论,本文主要为小编从理论理解到实践的过程记录。

2,公式推断

一些贝叶斯定理预习知识:我们知道当事件A和事件B独立时,P(AB)=P(A)(B),但如果事件不独立,则P(AB)=P(A)P(B|A)。为两件事件同时发生时的一般公式,即无论事件A和B是否独立。当然也可以写成P(AB)=P(B)P(A|B),表示若要两件事同事发生,则需要事件B发生后,事件A也要发生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)为先验概率,P(B|A)为B的后验概率,P(A|B)为A的后验概率(在这里也为似然值),P(A)为A的先验概率(在这也为归一化常量)。

由上推导可知,其实朴素贝叶斯法就是在贝叶斯定理基础上,加上特征条件独立假设,对特定输入的X(样本,包含N个特征),求出后验概率最大值时的类标签Y(如是否为垃圾邮件),理解起来比逻辑回归要简单多,有木有,这也是本算法优点之一,当然运行起来由于得益于特征独立假设,运行速度也更快。

8. Python代码

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=",")

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print(" 调用scikit的朴素贝叶斯算法包GaussianNB ")

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包MultinomialNB ")

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包BernoulliNB ")

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的KNeighborsClassifier ")

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的LogisticRegression(penalty='l2')")

model= LogisticRegression(penalty='l2')

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的RandomForestClassifier(n_estimators=8) ")

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的tree.DecisionTreeClassifier()")

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的GradientBoostingClassifier(n_estimators=200) ")

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的SVC(kernel='rbf', probability=True) ")

model= SVC(kernel='rbf', probability=True)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

"""

# 预处理代码集锦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特征相关性分析

##计算每行每列数据的缺失值个数

defnum_missing(x):

return sum(x.isnull())

print("Missing values per column:")

print(df.apply(num_missing, axis=0)) #axis=0代表函数应用于每一列

print(" Missing values per row:")

print(df.apply(num_missing, axis=1).head()) #axis=1代表函数应用于每一行"""

阅读全文

与pythonsklearn聚类算法相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163