导航:首页 > 源码编译 > 哈夫曼树生成算法java

哈夫曼树生成算法java

发布时间:2023-06-11 16:07:20

‘壹’ 哈夫曼编码的算法代码是什么

// 哈夫曼编码(算法)#include <stdio.h>
#include <stdlib.h>
#include <string.h>typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码typedef struct
{
unsigned int weight; //用来存放各个结点的权值
unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针
} HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树//选择两个parent为0,且weight最小的结点s1和s2
void Select(HuffmanTree *ht,int n,int *s1,int *s2)
{
int i,min;
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0)
{
min=i;
break;
}
}
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0)
{
if((*ht)[i].weight<(*ht)[min].weight)
min=i;
}
}
*s1=min;
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0 && i!=(*s1))
{
min=i;
break;
}
}
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0 && i!=(*s1))
{
if((*ht)[i].weight<(*ht)[min].weight)
min=i;
}
}
*s2=min;
}//构造哈夫曼树ht。w存放已知的n个权值
void CrtHuffmanTree(HuffmanTree *ht,int *w,int n)
{
int m,i,s1,s2;
m=2*n-1;
*ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(i=1; i<=n; i++) //1--n号存放叶子结点,初始化
{
(*ht)[i].weight=w[i];
(*ht)[i].LChild=0;
(*ht)[i].parent=0;
(*ht)[i].RChild=0;
}
for(i=n+1; i<=m; i++)
{
(*ht)[i].weight=0;
(*ht)[i].LChild=0;
(*ht)[i].parent=0;
(*ht)[i].RChild=0;
} //非叶子结点初始化
printf("\nHuffmanTree: \n");
for(i=n+1; i<=m; i++) //创建非叶子结点,建哈夫曼树
{
//在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0
//且weight最小的结点,其序号分别赋值给s1、s2
Select(ht,i-1,&s1,&s2);
(*ht)[s1].parent=i;
(*ht)[s2].parent=i;
(*ht)[i].LChild=s1;
(*ht)[i].RChild=s2;
(*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight;
printf("%d (%d, %d)\n",(*ht)[i].weight,(*ht)[s1].weight,(*ht)[s2].weight);
}
printf("\n");
} //哈夫曼树建立完毕//从叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码
void CrtHuffmanCode(HuffmanTree *ht, HuffmanCode *hc, int n)
{
char *cd;
int i,start,p;
unsigned int c;
hc=(HuffmanCode *)malloc((n+1)*sizeof(char *)); //分配n个编码的头指针
cd=(char *)malloc(n*sizeof(char)); //分配求当前编码的工作空间
cd[n-1]='\0'; //从右向左逐位存放编码,首先存放编码结束符
for(i=1; i<=n; i++) //求n个叶子结点对应的哈夫曼编码
{
start=n-1; //初始化编码起始指针
for(c=i,p=(*ht)[i].parent; p!=0; c=p,p=(*ht)[p].parent) //从叶子到根结点求编码
if( (*ht)[p].LChild==c)
cd[--start]='0'; //左分支标0
else
cd[--start]='1'; //右分支标1
hc[i]=(char *)malloc((n-start)*sizeof(char)); //为第i个编码分配空间
strcpy(hc[i],&cd[start]);
}
free(cd);
for(i=1; i<=n; i++)
printf("HuffmanCode of %3d is %s\n",(*ht)[i].weight,hc[i]);
printf("\n");
}void main()
{
HuffmanTree HT;
HuffmanCode HC;
int *w,i,n,wei,m;
printf("\nn = " );
scanf("%d",&n);
w=(int *)malloc((n+1)*sizeof(int));
printf("\ninput the %d element's weight:\n",n);
for(i=1; i<=n; i++)
{
printf("%d: ",i);
fflush(stdin);
scanf("%d",&wei);
w[i]=wei;
}
CrtHuffmanTree(&HT,w,n);
CrtHuffmanCode(&HT,&HC,n);
}

‘贰’ 哈夫曼树算法

题目的阐述:以N进制编码方式对一个英文字串中的字符进行编码,每个不同的字符其编码不同.使得由新的编码替代原串后总码长最小,且输入0,1,2,...,N-1构成的数字串后,依照该编码方式可以正确的对译出唯一的英文原串.如:N=3英文原串为ABBCBADDACE其对应的一种编码方式为A:00B:01C:020D:021E:022原串对译后的编码为000101020010002102100020022其码长为27若输入编码串0102002200则对应的英文原串为BCEA 分析: 假设英文原串中的字符存放于字符集S中,‖S‖=X,每个字符在字串中出现的概率为W[i],L[i]为字符i的编码长.依题意得,对S集合中的不同字符进行N进制编码后要求1)新字串的码长最短WPL=∑W[i]*L[i]
(i∈1..X)使得在WPL是所有编码方式中的最小值2)编码无二义性任意一字符编码都不为其它字符编码的前缀 此题以哈夫曼树来解答是非常适宜的.N为此哈夫曼树的分叉数,S字符集里的元素即为此N叉哈夫曼树的叶子,概率W[i]即为叶子结点的权重,从根结点到各叶子结点的路径长即为该叶子结点的编码长L[i].由哈夫曼树的思想可以知道哈夫曼树的建立是一步到位的贪心法,即权重越大的结点越靠近该树的根,这样,出现频率越大的字符其编码就越短.但具体应该怎样建立起此N叉哈夫曼树呢?我们首先以N=2为例:S={A,B,C,D}W=[3,1,2,1]首先从W中选出两个最小权,1,1,将其删去,并以2(即1+1)替代W=[3,2,2];再从新的W中取出两个最小权,2,2,将其删去,并以4(即2+2)替代W=[3,4];依此类推,直到W中只一个值时合并结束,此时W=[7]以上两两合并的过程即为二叉哈夫曼树的建立过程,每一次的合并即是将两棵子树归于一个根结点下,于是可以建立二叉树如下: m0åæ1mmA0åæ1mmC0åæ1mmBD MIN-WPL=3*1+1*3+2*2+1*3=13 从某一根结点出发走向其左子树标记为0,走向其右子树标记为1,则可以得到以下编码A,B,C,D对应的编码为A:0B:110C:10D:111
N=3时又是怎样一种情况呢?设S={A,B,C,D,E}W=[7,4,2,5,3}则按权重排序可得S={D,B,E,C,A}W=[7,5,4,3,2]那么此哈夫曼树的树形应为怎样呢?是以下的左图,还是右图,或是两者均不是mmåâæåæmmllmåæåæCAåælllllmADBEDåæ
lmBåællEC 显然,要带权路径长WPL最短,那么,此树的高度就应尽可能的小,由此可知将此树建成丰满N叉树是最合理的,于是我们尽量使树每一层都为N个分枝.对于这道题的情况,我们具体来分析.按照哈夫曼树的思想,首先从W中取出权最小的三个值,即2,3,4,并以9(2+3+4)来代替,得到新的W=[9,7,5];再将这三个值合并成9+7+5=21这个结点.于是得到三叉哈夫曼树如下:måâællmDBåâælllECAWPL=1*7+1*5+2*2+2*3+2*4=30以0..N-1依次标记每个根结点的N个分枝,则可以得到每个字符相对应的编码:A:22B:1C:21D:0E:20我们发现对于这种情况恰巧每层均为N个分枝,但事实上并非所有的N叉哈夫曼树都可得到每层N个分枝.例于当N=3,‖S‖=6时就不可能构成一棵每层都为三个分枝的三叉树.如何来处理这种情况呢?最简单的处理方式就是添加若干出现概率为0的空字符填补在N叉树的最下一层,这些权为0的虚结点并无实际意义但却非常方全便于这棵N叉树的建立.空字符的添加个数add的计算如下:Y=‖S‖mod(n-1)add=0(Y=1)add=1(Y=0)add=N-Y(Y>1) 虚结点的加入使得权重最小的N-add个字符构成了距根结点最远的分枝,使其它字符构成的N叉树保持了丰满的N叉结构.例:N=3S={A,B,C,D,E,F}W=[1,2,3,4,5,6}则y:=6mod(3-1)=0add=1于是构成N叉树如下:­为虚结点¡åâællmFEåâællmDCåâæBA­WPL=1*6+1*5+2*4+2*3+3*2+3*1+3*0=33对应编码为:A:221B:220C:21D:20E:1F:0

‘叁’ 数据结构求赫夫曼树的算法

#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>

typedef struct
{
unsigned int weight;
unsigned int parent,lchild,rchild;
}htnode,*huffmantree;

typedef char **huffmancode;

int min1(huffmantree t,int i)
{
int j,flag;
unsigned int k=UINT_MAX; // 取k为不小于可能的值(即unsigned int类型的最大值)
for(j = 1; j <= i; j++)
if(t[j].weight < k && t[j].parent == 0)
k = t[j].weight,flag = j;
t[flag].parent=1;
return flag;
}

// s1为最小的两个值中序号小的那个
void select(huffmantree t,int i,int *s1,int *s2)
{
int j;
*s1=min1(t,i);
*s2=min1(t,i);
if(*s1 > *s2)
{
j=*s1;
*s1=*s2;
*s2=j;
}
}

void huffmancoding(huffmantree *HT,huffmancode *HC,int *w,int n)
{
int m,i,s1,s2,start;
unsigned c,f;
huffmantree p;
char *cd;

if(n<=1)
return;
m=2*n-1;
*HT=(huffmantree)malloc((m+1)*sizeof(htnode));
for(p=*HT+1,i=1;i<=n;++i,++p,++w)
{
(*p).weight=*w;
(*p).parent=0;
(*p).lchild=0;
(*p).rchild=0;
}
for(;i<=m;++i,++p)
(*p).parent=0;
for(i=n+1;i<=m;++i)
{
select(*HT,i-1,&s1,&s2);
(*HT)[s1].parent=(*HT)[s2].parent=i;
(*HT)[i].lchild=s1;
(*HT)[i].rchild=s2;
(*HT)[i].weight=(*HT)[s1].weight+(*HT)[s2].weight;
}
*HC=(huffmancode)malloc((n+1)*sizeof(char*));
cd=(char*)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
for(c=i,f=(*HT)[i].parent; f!=0; c=f,f=(*HT)[f].parent)
if((*HT)[f].lchild==c)
cd[--start]='0';
else
cd[--start]='1';
(*HC)[i]=(char*)malloc((n-start)*sizeof(char));

strcpy((*HC)[i],&cd[start]);
}
free(cd);
}

int main()
{
huffmantree HT;
huffmancode HC;
int *w,n,i;

printf("请输入权值的个数(>1):\n");
scanf("%d",&n);
w=(int*)malloc(n*sizeof(int));
printf("请依次输入%d个权值(整型):\n",n);
for(i=0;i<=n-1;i++)
scanf("%d",w+i);
huffmancoding(&HT,&HC,w,n);
for(i=1;i<=n;i++)
puts(HC[i]);
return 0;
}

不知道是不是你要的

‘肆’ 哈夫曼树编码的应用(java语言)

1)编写函数实现选择parent为0且权值最小的两个根结点的算法
2)编写函数实现统计字符串中字符的种类以及各类字符的个数。
3)编写函数构造赫夫曼树。
4)编写函数实现由赫夫曼树求赫夫曼编码表。
5)编写函数实现将正文转换为相应的编码文件。
6)编写函数实现将编码文件进行译码。
7)编写主控函数,完成本实验的功能。

‘伍’ 哈夫曼树

转自: http://blog.csdn.net/hikvision_java_gyh/article/details/8952596
哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的带权路径长度记为WPL=(W1 L1+W2 L2+W3 L3+...+ Wn Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。【例】给定4个叶子结点a,b,c和d,分别带权7,5,2和4。构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为: (a)WPL=7 2+5 2+2 2+4 2=36 (b)WPL=7 3+5 3+2 1+4 2=46 (c)WPL=7 1+5 2+2 3+4 3=35其中(c)树的WPL最小,可以验证,它就是哈夫曼树。

构造哈夫曼树的算法如下: 1)对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,..., Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。 2)在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 3)从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。 4)重复2)和3),直到集合F中只有一棵二叉树为止。 例如,对于4个权值为1、3、5、7的节点构造一棵哈夫曼树,其构造过程如下图所示:

可以计算得到该哈夫曼树的路径长度WPL=(1+3) 3+2 5+1*7=26。
哈夫曼编码应用 大数据 量的图像信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力。单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩。压缩的关键在于编码,如果在对数据进行编码时,对于常见的数据,编码器输出较短的码字;而对于少见的数据则用较长的码字表示,就能够实现压缩。【例】:假设一个文件中出现了8种符号S0,SQ,S2,S3,S4,S5,S6,S7,那么每种符号要编码,至少需要3bit。假设编码成 000,001, 010,011,100,101,110,111。那么符号序列S0S1S7S0S1S6S2S2S3S4S5S0S0S1编码后变成 ,共用了42bit。我们发现S0,S1,S2这3个符号出现的频率比较大,其它符号出现的频率比较小,我们采用这样的编码方案:S0到S7的码辽分别01,11,101,0000,0001,0010,0011, 100,那么上述符号序列变成,共用了39bit。尽管有些码字如 S3,S4,S5,S6变长了(由3位变成4位),但使用频繁的几个码字如S0,S1变短了,所以实现了压缩。对于上述的编码可能导致解码出现非单值性:比如说,如果S0的码字为01,S2的码字为011,那么当序列中出现011时,你不知道是S0的码字后面跟了个1,还是完整的一个S2的码字。因此,编码必须保证较短的编码决不能是较长编码的前缀。符合这种要求的编码称之为前缀编码。要构造符合这样的二进制编码体系,可以通过二叉树来实现。以下是哈夫曼树的 Java 实现:
[java] view plain

// 二叉树节点
public class Node implements Comparable { private int value; private Node leftChild; private Node rightChild; public Node(int value) { this.value = value; } public int getValue() { return value; } public void setValue(int value) { this.value = value; } public Node getLeftChild() { return leftChild; } public void setLeftChild(Node leftChild) { this.leftChild = leftChild; } public Node getRightChild() { return rightChild; } public void setRightChild(Node rightChild) { this.rightChild = rightChild; } public int compareTo(Object o) { Node that = (Node) o; double result = this.value - that.value; return result > 0 ? 1 : result == 0 ? 0 : -1; } }

private static Node build(List<Node> nodes) {
nodes = new ArrayList<Node>(nodes);
sortList(nodes);
while (nodes.size() > 1) {
createAndReplace(nodes);
}
return nodes.get(0);
}

/**

/**

private static void sortList(List<Node> nodes) {
Collections.sort(nodes);
}

`
/**

‘陆’ Java实现哈夫曼算法,运行出现问题,求帮助,在线等!!!

可以在Dog与Cat类中重写Animal中的animalDo方法,通过调用animalDo方法,

然后会自动根据不同的实例调用不同类中的方法(多态知识)。

‘柒’ 到底什么是哈夫曼树啊,求例子

哈夫曼树是给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

例子:

1、将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);

2、 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;

3、从森林中删除选取的两棵树,并将新树加入森林;

4、重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

(7)哈夫曼树生成算法java扩展阅读:

按照哈夫曼编码构思程序流程:

1、切割的顺序是从上往下,直至数组中的元素全部出现在叶节点;

2、我们思路正好相反,从数组中找出最小的两个元素作为最下面的叶节点,在向备选数组中存入这两个叶节点的和(这个新的和加入累加运算,这个和也就是所求的最小值的一部分,原因如上图)。

3、以本题为例,备选数组中现有元素为{30,30},再次取出两个最小元素进行求和,得到新的元素,回归备选数组并记入累加。

4、上述2.3布重复执行直至备选数组中只有一个元素,此时累加结束,返回累加值即可

5、求数组中的最小值,可以用小根堆进行提取最为方便;此题用到了贪心的思路,即用相同的策略重复执行,直至我们得到所需的结果。

阅读全文

与哈夫曼树生成算法java相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163