⑴ 什么是欧几里得算法,它有什么意义
欧几里得算法即辗转相除法,用以求两个数的最大公约数(或者最小公倍数)
证明如下
假设x,y的最大公约数为d
且设x=k1*d,y=k2*d;
则有z=x-y=(k1-k2)*d;
也必定能被d整除,所以通过两个数不断辗转,直到其中一个变为0为止,以此最终快速得出两个数的最大公约数。
在算法的应用上是用求余以加速运算的速度。
总的来说,欧几里得算法的意义就是快速求得两个数的最大公约数。
⑵ 欧几里得算法
计算过程一模一样,只是最后对1001取模:
1 = 167 - 166
= 167 - (834 - 4 * 167)
= 5 * 167 - 834
= 5 *(1001 - 834) - 834
= 5 * 1001 - 6 *834
= 5 * 1001 - 6 * (3837 -3 *1001)
= 23 * 1001 - 6 *3837
然后对等式两端同时除以模1001得
6 * 3837 = 1 (mod 1001)
于是 x = 6