导航:首页 > 源码编译 > python聚类分析算法

python聚类分析算法

发布时间:2023-06-15 15:23:25

python Kmeans聚类如何检验所得结果最优

需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。

② 减法聚类如何用Python实现

下面是一个k-means聚类算法在python2.7.5上面的具体实现,你需要先安装Numpy和Matplotlib:
from numpy import *
import time
import matplotlib.pyplot as plt

# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j

## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k > len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()

③ 聚类算法之K均值算法(k-means)的Python实现

K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。

通常,人们根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类。

所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个簇。

k-means算法是一种很常见的聚类算法,它的基本思想是:通过迭代寻找k个聚类的一种划分方案,使得用这k个聚类的均值来代表相应各类样本时所得的总体误差最小。

看起来还不错

分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。

④ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型

-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。

随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变

Figure 1

K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。

技术路线:
sklearn.cluster.Kmeans

数据实例:

⑤ k-means聚类算法python实现,导入的数据集有什么要求

一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

⑥ python对数据进行聚类怎么显示数据分类

将其整理成数据集为:
[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]
算法过程:

1、计算原始的信息熵。
2、依次计算数据集中每个样本的每个特征的信息熵。
3、比较不同特征信息熵的大小,选出信息熵最大的特征值并输出。
运行结果:
col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0
col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108
bestInfoGain : 2.37744375108 bestFeature: 0
结果分析:
说明按照第一列,即有无喉结这个特征来进行分类的效果更好。
思考:
1、能否利用决策树算法,将样本最终的分类结果进行输出?如样本1,2,3属于男性,4属于女性。

2、示例程序生成的决策树只有一层,当特征量增多的时候,如何生成具有多层结构的决策树?
3、如何评判分类结果的好坏?
在下一篇文章中,我将主要对以上三个问题进行分析和解答。如果您也感兴趣,欢迎您订阅我的文章,也可以在下方进行评论,如果有疑问或认为不对的地方,您也可以留言,我将积极与您进行解答。
完整代码如下:
from math import log
"""
计算信息熵
"""
def calcEntropy(dataset):
diclabel = {} ## 标签字典,用于记录每个分类标签出现的次数
for record in dataset:
label = record[-1]
if label not in diclabel.keys():
diclabel[label] = 0
diclabel[label] += 1
### 计算熵
entropy = 0.0
cnt = len(dataset)
for label in diclabel.keys():
prob = float(1.0 * diclabel[label]/cnt)
entropy -= prob * log(prob,2)
return entropy
def initDataSet():
dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]
label = ["male","female"]
return dataset,label
#### 拆分dataset ,根据指定的过滤选项值,去掉指定的列形成一个新的数据集
def splitDataset(dataset , col, value):
retset = [] ## 拆分后的数据集
for record in dataset:
if record[col] == value :
recedFeatVec = record[:col]
recedFeatVec.extend(record[col+1:]) ### 将指定的列剔除
retset.append(recedFeatVec) ### 将新形成的特征值列表追加到返回的列表中
return retset
### 找出信息熵增益最大的特征值
### 参数:
### dataset : 原始的数据集
def findBestFeature(dataset):
numFeatures = len(dataset[0]) - 1 ### 特征值的个数
baseEntropy = calcEntropy(dataset) ### 计算原始数据集的熵
baseInfoGain = 0.0 ### 初始信息增益
bestFeature = -1 ### 初始的最优分类特征值索引
### 计算每个特征值的熵
for col in range(numFeatures):
features = [record[col] for record in dataset] ### 提取每一列的特征向量 如此处col= 0 ,则features = [1,1,0,0]
uniqueFeat = set(features)
curInfoGain = 0 ### 根据每一列进行拆分,所获得的信息增益
for featVal in uniqueFeat:
subDataset = splitDataset(dataset,col,featVal) ### 根据col列的featVal特征值来对数据集进行划分
prob = 1.0 * len(subDataset)/numFeatures ### 计算子特征数据集所占比例
curInfoGain += prob * calcEntropy(subDataset) ### 计算col列的特征值featVal所产生的信息增益
# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
if curInfoGain > baseInfoGain:
baseInfoGain = curInfoGain
bestFeature = col
return baseInfoGain,bestFeature ### 输出最大的信息增益,以获得该增益的列
dataset,label = initDataSet()
infogain , bestFeature = findBestFeature(dataset)
print "bestInfoGain :" , infogain, " bestFeature:",bestFeature

⑦ 如何用Python进行大数据挖掘和分析

如何用Python进行大数据挖掘和分析?快速入门路径图
大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都有可能会遇到它。
什么是 大数据 ?
大数据就像它看起来那样——有大量的数据。单独而言,你能从单一的数据获取的洞见穷其有限。但是结合复杂数学模型以及强大计算能力的TB级数据,却能创造出人类无法制造的洞见。大数据分析提供给商业的价值是无形的,并且每天都在超越人类的能力。
大数据分析的第一步就是要收集数据本身,也就是众所周知的“数据挖掘”。大部分的企业处理着GB级的数据,这些数据有用户数据、产品数据和地理位置数据。今天,我将会带着大家一起探索如何用 Python 进行大数据挖掘和分析?
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼等。还有,Python是开源的,并且有很多用于数据科学的类库。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
数据分析流程
一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:
数据获取:公开数据、Python爬虫
外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显着性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
总结
其实做数据挖掘不是梦,5步就能让你成为一个Python爬虫高手!

⑧ 用python2.7做kmeans聚类算法怎么导入数据

指定文件名
问题描述:一堆二维数据,用kmeans算法对其进行聚类,下面例子以分k=3为例。
原数据:
1.5,3.1
2.2,2.9
3,4
2,1
15,25
43,13
32,42
0,0
8,9
12,5
9,12
11,8
22,33
24,25

实现代码:

[python] view plain
#coding:utf-8
from numpy import *
import string
import math

def loadDataSet(filename):
dataMat = []
fr = open(filename)
for line in fr.readlines():
element = line.strip('\n').split(',')
number = []
for i in range(len(element)):
number.append(string.atof(element[i]))
dataMat.append(number)
return dataMat

def distEclud(vecA, vecB):
count = len(vecA)
s = 0.0
for i in range(0, count):
s = s + power(vecA[i]-vecB[i], 2)
return sqrt(s)

def clusterOfElement(means, element):
min_dist = distEclud(means[0], element)
lable = 0
for index in range(1, len(means)):
dist = distEclud(means[index], element)
if(dist < min_dist):
min_dist = dist
lable = index
return lable

def getMean(cluster): #cluster=[[[1,2],[1,2],[1,2]....],[[2,1],[2,1],[2,1],[2,1]...]]
num = len(cluster) #1个簇的num,如上为3个
res = []
temp = 0
dim = len(cluster[0])
for i in range(0, dim):
for j in range(0, num):
temp = temp + cluster[j][i]
temp = temp / num
res.append(temp)
return res

def kMeans():
k = 3
data = loadDataSet('data.txt')
print "data is ", data
inite_mean = [[1.1, 1], [1, 1],[1,2]]

count = 0
while(count < 1000):
count = count + 1
clusters = []
means = []
for i in range(k):
clusters.append([])
means.append([])

for index in range(len(data)):
lable = clusterOfElement(inite_mean, data[index])
clusters[lable].append(data[index])

for cluster_index in range(k):
mea = getMean(clusters[cluster_index])
for mean_dim in range(len(mea)):
means[cluster_index].append(mea[mean_dim])

for mm in range(len(means)):
for mmm in range(len(means[mm])):
inite_mean[mm][mmm] = means[mm][mmm]

print "result cluster is ", clusters
print "result means is ", inite_mean

kMeans()

阅读全文

与python聚类分析算法相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:382
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163