导航:首页 > 源码编译 > 梯度下降算法的正确步骤牛客网

梯度下降算法的正确步骤牛客网

发布时间:2023-06-16 12:46:20

① 随机梯度下降法原理和步骤

随机梯度下降主要用来求解类似于如下求和形式的优化问题:
[公式]
梯度下降法:
[公式]
当[公式]很大时,每次迭代计算所有的[公式]会非常耗时。
随机梯度下降的想法就是每次在[公式]中random选取一个计算代替如上的[公式],以这个随机选取的方向作为下降的方向。
[公式][公式]
由于[公式], 当选取step size [公式]时,算法在期望的意义下收敛。
注意到在[公式] 靠近极小值点[公式]时,[公式],这导致随机梯度下降法精度低。由于方差的存在,要使得算法收敛,就需要[公式]随[公式]逐渐减小。因此导致函数即使在强凸且光滑的条件下,收敛速度也只有[公式]. 后来提出的变种SAG,SVRG,SDCA都是在降方差,为了保证在[公式]时,方差趋于0。以上提到的几种变种都能达到线性收敛速度。

② 梯度下降的求解过程

顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。
其迭代公式为 ,其中 代表梯度负方向, 表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标ak+1看做是的函数,然后求满足f(ak+1)的最小值的 即可。
因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。

③ 梯度下降法原理和步骤

一、梯度法思想
梯度法思想的三要素:出发点、下降方向、下降步长。
机器学习中常用的权重更新表达式为
:,这里的λ就是学习率,本文从这个式子出发来把机器学习中的各种“梯度”下降法阐释清楚。
机器学习目标函数,一般都是凸函数,什么叫凸函数?限于篇幅,我们不做很深的展开,在这儿我们做一个形象的比喻,凸函数求解问题,可以把目标损失函数想象成一口锅,来找到这个锅的锅底。非常直观的想法就是,我们沿着初始某个点的函数的梯度方向往下走(即梯度下降)。在这儿,我们再作个形象的类比,如果把这个走法类比为力,那么完整的三要素就是步长(走多少)、方向、出发点,这样形象的比喻,让我们对梯度问题的解决豁然开朗,出发点很重要,是初始化时重点要考虑的,而方向、步长就是关键。事实上不同梯度的不同就在于这两点的不同!
梯度方向是

,步长设为常数Δ,这时就会发现,如果用在梯度较大的时候,离最优解比较远,W的更新比较快;然而到了梯度较小的时候,也就是较靠近最优解的时候,W的更新竟然也保持着跟原来一样的速率,这样会导致W很容易更新过度反而远离了最优解,进而出现在最优解附近来回震荡。所以,既然在远离最优解的时候梯度大,在靠近最优解的时候梯度小,我们让步长随着这个律动,于是我我们就用λ|W|来代替Δ,最后得到了我们熟悉的式子:

所以说这时的λ是随着坡度的陡缓而变化的,别看它是个常数。
二、全量梯度下降法(Batch gradient descent)
全量梯度下降法每次学习都使用整个训练集,因此每次更新都会朝着正确的方向进行,最后能够保证收敛于极值点,凸函数收敛于全局极值点,非凸函数可能会收敛于局部极值点,缺陷就是学习时间太长,消耗大量内存。
第二、随机梯度下降法(Stochastic Gradient Descent)
SGD一轮迭代只用一条随机选取的数据,尽管SGD的迭代次数比BGD大很多,但一次学习时间非常快。
SGD的缺点在于每次更新可能并不会按照正确的方向进行,参数更新具有高方差,从而导致损失函数剧烈波动。不过,如果目标函数有盆地区域,SGD会使优化的方向从当前的局部极小值点跳到另一个更好的局部极小值点,这样对于非凸函数,可能最终收敛于一个较好的局部极值点,甚至全局极值点。
缺点是,出现损失函数波动,并且无法判断是否收敛。

④ 梯度下降法是什么

梯度下降法,是一种基于搜索的最优化方法,它其实不是一个机器学习算法,但是在机器学习领域,许多算法都是以梯度下降法为基础的,它的主要作用是寻找目标函数的最优解。

在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

常用的梯度下降法有3种不同的形式:

(1)批量梯度下降法,简称 BGD,使用所有样本,比较耗时;

(2)随机梯度下降法,简称 SGD,随机选择一个样本,简单高效;

(3)小批量梯度下降法,简称 MBGD,使用少量的样本,这是一个折中的办法。

⑤ 梯度下降法是什么

梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最陡下降法,但是不该与近似积分的最陡下降法(英语:Method of steepest descent)混淆。

要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。

如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

梯度下降算法使用当前位置的梯度迭代计算下一个点,然后对其进行缩放(按学习率)并从当前位置减去获得的值(迈出一步)。它减去该值,因为我们想要最小化函数(最大化它会增加)。

缺点

梯度下降法的缺点包括:

1、靠近局部极小值时速度减慢。

2、直线搜索可能会产生一些问题。

3、可能会“之字型”地下降。

⑥ 梯度下降法是什么

梯度下降法是一个一阶最优化算法,通常也称为最陡下降法,但是不该与近似积分的最陡下降法(英语:Method of steepest descent)混淆。

梯度下降算法使用当前位置的梯度迭代计算下一个点,然后对其进行缩放(按学习率)并从当前位置减去获得的值(迈出一步)。它减去该值,因为我们想要最小化函数(最大化它会增加)。

注意事项

从数学上的角度来看,梯度的方向是函数增长速度最快的方向,那么梯度的反方向就是函数减少最快的方向。那么,如果想计算一个函数的最小值,就可以使用梯度下降法的思想来做。

注意得到的函数临界点,临界点并不一定是全局最大值或者全局最小值,甚至不是局部的最大值或者局部最小值。

阅读全文

与梯度下降算法的正确步骤牛客网相关的资料

热点内容
qq下载的怎么解压文件 浏览:694
测亩宝app怎么收费 浏览:371
我的世界地图怎么连接服务器地址 浏览:352
计算机pdf下载 浏览:571
sp源码怎么编辑修改 浏览:832
程序员男票怎么样 浏览:609
程序员招聘追求什么 浏览:410
tracert命令的使用 浏览:983
金蜘蛛的指标源码 浏览:880
探探资源网站源码 浏览:942
php调用webserver 浏览:237
程序员配听诊器 浏览:76
程序员免费连wifi 浏览:494
王者荣耀今天怎么服务器更新了 浏览:153
单片机拼搭 浏览:153
程序员没必要穿冲锋衣 浏览:409
nova隐藏app怎么用 浏览:680
单片机程序中ret 浏览:225
爱奇艺上海算法团队 浏览:140
程序员颜值高的人 浏览:364