A. 新手学习python中KNN算法的手写识别出现问题 求助
参考了其他博主的代码 想试着运行 然后去理解。结果一直报错,希望大神帮帮忙。
import numpy as np
import os
import kNN
def img2vector(filename):
"""函数将以文本格式出现的32*32的0-1图片,转变成一维特征数组,返回一维数组
Keyword argument:
filename -- 文本格式的图片文件
"""
imgvect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
imgvect[0, 32*i + j] = int(linestr[j])
return imgvect
def handwriteClassfiy(testfile, trainfile, k):
"""函数将trainfile中的文本图片转换成样本特征集和样本类型集,用testfile中的测试样本测试,无返回值
Keyword argument:
testfile -- 测试图片目录
trainfile -- 样本图片目录
"""
trainFileList = os.listdir(trainfile)
trainFileSize = len(trainFileList)
labels = []
trainDataSet = np.zeros((trainFileSize, 1024))
for i in range(trainFileSize):
filenameStr = trainFileList[i]
digitnameStr = filenameStr.split('.')[0]
digitLabels = digitnameStr.split('_')[0]
labels.append(digitLabels)
trainDataSet[i, :] = img2vector(trainfile + '/' + filenameStr)
testFileList = os.listdir(testfile)
testNumber = len(testFileList)
errorcount = 0.0
for testname in testFileList:
testdigit = img2vector(testfile + '/' + testname)
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
testStr = testname.split('.')[0]
testDigitLabel = testStr.split('_')[0]
if classifyresult != testDigitLabel:
errorcount += 1.0
#print('this test real digit is:%s, and the result is: %s' % (testDigitLabel, classifyresult))
print('k = %d, errorRatio is: %f' % (k, errorcount/float(testNumber)))
return
if __name__ == '__main__':
filename = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits/0_1.txt'
traindir= 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/trainingDigits'
testdir = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits'
handwriteClassfiy(testdir, traindir, 3)
错误提示Traceback (most recent call last):
File "kNN.py", line 56, in <mole>
handwriteClassfiy(testdir, traindir, 3)
File "kNN.py", line 43, in handwriteClassfiy
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
AttributeError: mole 'kNN' has no attribute 'classfiy'
你这个文件是不是就叫 kNN.py ?如果是的话那你这个里面根本就没有 classfiy 这个属性,当然会报错。
另外,import kNN 是 import 自己?
B. 如何快速使用Python神经网络识别手写字符
CNN卷积神经网络是一种深度模型。它其实老早就已经可以成功训练并且应用了(最近可能deep learning太火了,CNNs也往这里面靠。虽然CNNs也属于多层神经网络架构,但把它置身于DL家族,还是有不少人保留自己的理解的)。
C. python svm 怎么训练模型
支持向量机SVM(Support Vector Machine)是有监督的分类预测模型,本篇文章使用机器学习库scikit-learn中的手写数字数据集介绍使用Python对SVM模型进行训练并对手写数字进行识别的过程。
准备工作
手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作为分类结果。在机器学习sklearn库中已经包含了不同数字的8X8灰度值矩阵,因此我们首先导入sklearn库自带的datasets数据集。然后是交叉验证库,SVM分类算法库,绘制图表库等。
12345678910#导入自带数据集from sklearn import datasets#导入交叉验证库from sklearn import cross_validation#导入SVM分类算法库from sklearn import svm#导入图表库import matplotlib.pyplot as plt#生成预测结果准确率的混淆矩阵from sklearn import metrics读取并查看数字矩阵
从sklearn库自带的datasets数据集中读取数字的8X8矩阵信息并赋值给digits。
12#读取自带数据集并赋值给digitsdigits = datasets.load_digits()查看其中的数字9可以发现,手写的数字9以64个灰度值保存。从下面的8×8矩阵中很难看出这是数字9。
12#查看数据集中数字9的矩阵digits.data[9]以灰度值的方式输出手写数字9的图像,可以看出个大概轮廓。这就是经过切割并以灰度保存的手写数字9。它所对应的64个灰度值就是模型的训练集,而真实的数字9是目标分类。我们的模型所要做的就是在已知64个灰度值与每个数字对应关系的情况下,通过对模型进行训练来对新的手写数字对应的真实数字进行分类。
1234#绘制图表查看数据集中数字9的图像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()
从混淆矩阵中可以看到,大部分的数字SVM的分类和预测都是正确的,但也有个别的数字分类错误,例如真实的数字2,SVM模型有一次错误的分类为1,还有一次错误分类为7。
D. Python手写识别怎么识
importos
importOperatePictureasOP
importOperateDatabaseasOD
importPictureAlgorithmasPA
importcsv
##Essentialvavriable基础变量
#Standardsize标准大小
N=100
#Graythreshold灰度阈值
color=200/255
n=10
#读取原CSV文件
reader=list(csv.reader(open('Database.csv',encoding='utf-8')))
#清除读取后的第一个空行
delreader[0]
#读取num目录下的所有文件名
fileNames=os.listdir(r"./num/")
#对比fileNames与reader,得到新增的图片newFileNames
newFileNames=OD.NewFiles(fileNames,reader)
print('Newpicturesare:',newFileNames)
#得到newFilesNames对应的矩阵
pic=OP.GetTrainPicture(newFileNames)
#将新增图片矩阵存入CSV中
OD.SaveToCSV(pic,newFileNames)
#将原数据库矩阵与新数据库矩阵合并
pic=OD.Combination(reader,pic)
#得到待识别图片
testFiles=os.listdir(r"./test/")
testPic=OP.GetTestPicture(testFiles)
#计算每一个待识别图片的可能分类
result=PA.CalculateResult(testPic,pic)
foriteminresult:
foriinrange(n):
print('第'+str(i+1)+'个向量为'+str(item[i+n])+',距离为'+str(item[i]))
E. 花了2万多买的Python70个项目,现在分享给大家,练手进厂靠它了
前言:
不管学习哪门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行。
这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从中选择自己想做的项目进行参考学习练手,你也可以从中寻找灵感去做自己的项目。
1、【Python 图片转字符画】
2、【200行Python代码实现2048】
3、【Python3 实现火车票查询工具】
4、【高德API+Python解决租房问题 】
5、【Python3 色情图片识别】
6、【Python 破解验证码】
7、【Python实现简单的Web服务器】
8、【pygame开发打飞机 游戏 】
9、【Django 搭建简易博客】
10、【Python基于共现提取《釜山行》人物关系】
11、【基于scrapy爬虫的天气数据采集(python)】
12、【Flask 开发轻博客】
13、【Python3 图片隐写术】
14、【Python 实现简易 Shell】
15、【使用 Python 解数学方程】
16、【PyQt 实现简易浏览器】
17、【神经网络实现手写字符识别系统 】
18、【Python 实现简单画板】
19、【Python实现3D建模工具】
20、【NBA常规赛结果预测——利用Python进行比赛数据分析】
21、【神经网络实现人脸识别任务】
22、【Python文本解析器】
23、【Python3 & OpenCV 视频转字符动画】
24、【Python3 实现淘女郎照片爬虫 】
25、【Python3实现简单的FTP认证服务器】
26、【基于 Flask 与 MySQL 实现番剧推荐系统】
27、【Python 实现端口扫描器】
28、【使用 Python 3 编写系列实用脚本】
29、【Python 实现康威生命 游戏 】
30、【川普撞脸希拉里(基于 OpenCV 的面部特征交换) 】
31、【Python 3 实现 Markdown 解析器】
32、【Python 气象数据分析 -- 《Python 数据分析实战》】
33、【Python实现键值数据库】
34、【k-近邻算法实现手写数字识别系统】
35、【ebay在线拍卖数据分析】
36、【Python 实现英文新闻摘要自动提取 】
37、【Python实现简易局域网视频聊天工具】
38、【基于 Flask 及爬虫实现微信 娱乐 机器人】
39、【Python实现Python解释器】
40、【Python3基于Scapy实现DDos】
41、【Python 实现密码强度检测器】
42、【使用 Python 实现深度神经网络】
43、【Python实现从excel读取数据并绘制成精美图像】
44、【人机对战初体验:Python基于Pygame实现四子棋 游戏 】
45、【Python3 实现可控制肉鸡的反向Shell】
46、【Python打造漏洞扫描器 】
47、【Python应用马尔可夫链算法实现随机文本生成】
48、【数独 游戏 的Python实现与破解】
49、【使用Python定制词云】
50、【Python开发简单计算器】
51、【Python 实现 FTP 弱口令扫描器】
52、【Python实现Huffman编码解压缩文件】
53、【Python实现Zip文件的暴力破解 】
54、【Python3 智能裁切图片】
55、【Python实现网站模拟登陆】
56、【给Python3爬虫做一个界面.妹子图网实战】
57、【Python 3 实现图片转彩色字符】
58、【自联想器的 Python 实现】
59、【Python 实现简单滤镜】
60、【Flask 实现简单聊天室】
61、【基于PyQt5 实现地图中定位相片拍摄位置】
62、【Python实现模板引擎】
63、【Python实现遗传算法求解n-queens问题】
64、【Python3 实现命令行动态进度条】
65、【Python 获取挂号信息并邮件通知】
66、【Python实现java web项目远端自动化更新部署】
67、【使用 Python3 编写 Github 自动周报生成器】
68、【使用 Python 生成分形图片】
69、【Python 实现 Redis 异步客户端】
70、【Python 实现中文错别字高亮系统】
最后:
以上项目列表希望可以给你在Python学习中带来帮助~
获取方式:转发 私信“1”