Ⅰ 组合计算公式
组合数的计算公式为:
组合是数学的重要概念之一,它表示从 n 个不同元素中每次取出 m 个不同元素,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。所有这样的组合的种数称为组合数。
n 元集合 A 中不重复地抽取 m 个元素作成的一个组合实质上是 A 的一个 m 元子集和。如果给集 A 编序成为一个序集,那么 A 中抽取 m 个元素的一个组合对应于数段到序集 A 的一个确定的严格保序映射。
(1)求组合数的算法扩展阅读
组合数的性质:
1、互补性质:即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。
2、组合恒等式:若表示在 n 个物品中选取 m 个物品,则如存在下述公式:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。
Ⅱ 排列数和组合数的计算公式是什么
排列数 A(n,m) 即字母A右下角n 右上角m, 表示n取m的排列数
A(n,m)=n!/(n-m)!=n*(n-1)*(n-2)*……*(n-m+1)
A(n,m)等于从n 开始连续递减的 m 个自然数的积
组合数 C(n,m) 即 字母C右下角n 右上角m, 表示n取m的排列数
C(n,m)=n!/(m!*(n-m)!)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
C(n,m)等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
(2)求组合数的算法扩展阅读:
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
C(n,m) 表示。(C即Combination).
C(n,m)=A(n,m)/m!=n!/((n-m)!*m!);C(n,m)=C(n,n-m);
Ⅲ 组合数的计算公式是什么
组合数C(n,m)的计算公式为:
,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。