1. 神经网络——BP算法
对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算陆袭法,具有非凡的历史意义和重大的现实意义。
1969年,作为人工神经网络创始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一书,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR )这样的基本问题,而且对多层网络也持悲观态度。这些论点给神经网络研究以沉重的打击,很多科学家纷纷离开这一领域,神经网络的研究走向长达10年的低潮时期。[1]
1974年哈佛大学的Paul Werbos发明BP算法时,正值神经外网络低潮期,并未受到应有的重视。[2]
1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商这个NP完全问题的求解上获得当时最好成绩,引起了轰动[2]。然而,Hopfield的研究成果仍未能指出明斯基等人论点的错误所在,要推动神培判经网络研究的全面开展必须直接解除对感知器——多层网络算法的疑虑。[1]
真正打破明斯基冰封魔咒的是,David Rumelhart等学者出版的《平行分布处理:认知的微观结构探索》一书。书中完整地提出了BP算法,系统地解决了多层网络中隐单元连接权的学习问题,并在数学上给出了完整的推导。这是神经网络发展史上的里程碑,BP算法迅速走红,掀起了神经网络的第二次高潮。[1,2]
因此,BP算法的历史意义:明确地否定了明斯基等人的错误观点,对神经网络第二次高潮具有决定性意义。
这一点是说BP算法在神经网络领域中的地位和意义。
BP算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多是在使用BP算法进行训练[2],包括最近炙手可热的深度学习概念下的卷积神经网络(CNNs)。
BP神经网络是这样一种神经网络模型,它是由一个输入层、一个输出层和一个或多个隐层构成,它的激活函数采用sigmoid函数,采用BP算法训练的多层前馈神经网络。
BP算法全称叫作误差反向传播(error Back Propagation,或早中兄者也叫作误差逆传播)算法。其算法基本思想为:在2.1所述的前馈网络中,输入信号经输入层输入,通过隐层计算由输出层输出,输出值与标记值比较,若有误差,将误差反向由输出层向输入层传播,在这个过程中,利用梯度下降算法对神经元权值进行调整。
BP算法中核心的数学工具就是微积分的 链式求导法则 。
BP算法的缺点,首当其冲就是局部极小值问题。
BP算法本质上是梯度下降,而它所要优化的目标函数又非常复杂,这使得BP算法效率低下。
[1]、《BP算法的哲学思考》,成素梅、郝中华着
[2]、《机器学习》,周志华着
[3]、 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
2016-05-13 第一次发布
2016-06-04 较大幅度修改,完善推导过程,修改文章名
2016-07-23 修改了公式推导中的一个错误,修改了一个表述错误
2. 什么是BP算法
BP算法由信号的正向传播和误差的反向传播两个过程组成。
正向传播时,输入样本从输入层进入网络,经隐层逐层传递至输出层,如果输乎此渣出层的实际输出与期望输出(导师信号)不同,则转至误差反向传播;如果输出层的实际输出与期望输出(导师信号)相同,结束学习算法。
反向传播时,将输出误差(期望输出与实际输出之差)按原通路反传计算,通过隐层反向,直至输入层,在反传过程中将误差分摊给各层的各个单元,获得各层各单元的误差信号,并将其作为修正各单扒判元权值的根据。这一计算过程使用梯度下降法完成,在不停地调整各层神经元的权值和阈值后,使误差信号减小到最低限度。岁悄
3. 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)
反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。
图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。
为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:
输入的样本为:
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
第一层隐藏层有三个神经元: 、 和 。该层的输入为:
以 神经元为例,则旁敏其输入为:
同理有:
假设我们选择函数 作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为: 、 和 。
第二层隐藏层有两个神经元: 和 。该层的输入为:
即第二层的输入是第一层的输出乘以第二层的权重,再加上亮困第二层的偏置。因此得到和的输入分别为:
该层的输出分别为: 和 。
输出层只有一个神经元 :。该层的输入为:
即:
因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为: 。
在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 ,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重 和偏置 )的偏导数。
假设我们要对第 层隐藏层的参数 和 求偏导数,即求 和 。假设 代表第 层神经元的运键枝输入,即 ,其中 为前一层神经元的输出,则根据链式法则有:
因此,我们只需要计算偏导数 、 和 。
前面说过,第k层神经元的输入为: ,因此可以得到:
上式中, 代表第 层神经元的权重矩阵 的第 行, 代表第 层神经元的权重矩阵 的第 行中的第 列。
我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:
因为偏置b是一个常数项,因此偏导数的计算也很简单:
依然以第一层隐藏层的神经元为例,则有:
偏导数 又称为 误差项(error term,也称为“灵敏度”) ,一般用 表示,例如 是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。
根据第一节的前向计算,我们知道第 层的输入与第 层的输出之间的关系为:
又因为 ,根据链式法则,我们可以得到 为:
由上式我们可以看到,第 层神经元的误差项 是由第 层的误差项乘以第 层的权重,再乘以第 层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、 和 ,则 和 可分别表示为:
下面是基于随机梯度下降更新参数的反向传播算法:
单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。
我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:
输入的样本为(假设其真实类标为"1"):
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
假设所有的激活函数均为Logistic函数: 。使用均方误差函数作为损失函数:
为了方便求导,我们将损失函数简化为:
我们首先初始化神经网络的参数,计算第一层神经元:
上图中我们计算出了第一层隐藏层的第一个神经元的输入 和输出 ,同理可以计算第二个和第三个神经元的输入和输出:
接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):
同样方法可以计算该层的第二个神经元的输入 和输出 :
最后计算输出层的输入 和输出 :
首先计算输出层的误差项 ,我们的误差函数为 ,由于该样本的类标为“1”,而预测值为 ,因此误差为 ,输出层的误差项为:
接着计算第二层隐藏层的误差项,根据误差项的计算公式有:
最后是计算第一层隐藏层的误差项:
4. 深入浅出BP神经网络算法的原理
深入浅出BP神经网络算法的原理
相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)
本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。
BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。
说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?
没错,BP的传播对象就是“误差”,传播目的就是得到所有层的估计误差。
它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。
它的学习本质就是:对各连接权值的动态调整。
拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)
BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?
BP利用处处可导的激活函数来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。
我们现在开始有监督的BP神经网络学习算法:
1、正向传播得到输出层误差e
=>输入层输入样本=>各隐藏层=>输出层
2、判断是否反向传播
=>若输出层误差与期望不符=>反向传播
3、误差反向传播
=>误差在各层显示=>修正各层单元的权值,直到误差减少到可接受程度。
算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。
假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。
这些变量分别如下:
认识好以上变量后,开始计算:
一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M
二、随机选取第k个输入样本及对应的期望输出
重复以下步骤至误差达到要求:
三、计算隐含层各神经元的输入和输出
四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。
五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算
六、利用第四步中的偏导数来修正输出层连接权值
七、利用第五步中的偏导数来修正隐藏层连接权值
八、计算全局误差(m个样本,q个类别)
比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。
假设我们的神经网络是这样的,此时有两个隐藏层。
我们先来理解灵敏度是什么?
看下面一个公式:
这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是误差对基的变化率,也就是导数。
因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。
也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。
每一个隐藏层第l层的灵敏度为:
这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解
而输出层的灵敏度计算方法不同,为:
而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。
对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。