1. hadoop hue配置文件怎样设置加密密码
ue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是基于Python Web框架Django实现的。通过使用Hue我们可以在浏览器端的Web控制台上与Hadoop集群进行交互来分析处理数据,例如操作HDFS上的数据,运行MapRece Job等等。很早以前就听说过Hue的便利与强大,一直没能亲自尝试使用,下面先通过官网给出的特性,通过翻译原文简单了解一下Hue所支持的功能特性集合:
默认基于轻量级sqlite数据库管理会话数据,用户认证和授权,可以自定义为MySQL、Postgresql,以及Oracle
基于文件浏览器(File Browser)访问HDFS
基于Hive编辑器来开发和运行Hive查询
支持基于Solr进行搜索的应用,并提供可视化的数据视图,以及仪表板(Dashboard)
支持基于Impala的应用进行交互式查询
支持Spark编辑器和仪表板(Dashboard)
支持Pig编辑器,并能够提交脚本任务
支持Oozie编辑器,可以通过仪表板提交和监控Workflow、Coordinator和Bundle
支持HBase浏览器,能够可视化数据、查询数据、修改HBase表
支持Metastore浏览器,可以访问Hive的元数据,以及HCatalog
支持Job浏览器,能够访问MapRece Job(MR1/MR2-YARN)
支持Job设计器,能够创建MapRece/Streaming/Java Job
支持Sqoop 2编辑器和仪表板(Dashboard)
支持ZooKeeper浏览器和编辑器
支持MySql、PostGresql、Sqlite和Oracle数据库查询编辑器
1 Hue安装(参考官网:http://gethue.com/how-to-build-hue-on-ubuntu-14-04-trusty/)
1.1 在git上下载HUE源码或者在它的官网下载(如果已经安装git可省略第一步)
sudo apt-get install git
git clone https://github.com/cloudera/hue.git
1.2 需要安装一些依赖的软件包
官网给出了一些,如果环境不一样,灵活调整,GIT上面给出的依赖文件列表:
2. hue/oozie 调度shell执行hive脚本
前面已经有篇文章介绍如何编译包含hive的spark-assembly.jar了,不清楚的可以翻看一下前面的文章。clouderamanager装好的spark,直接执行spark-shell进入命令行后,写入如下语句:valhiveContext=neworg.apache.spark.sql.hive.HiveContext(sc)你会发现没法执行通过,因为cm装的原生的spark是不支持sparkhql的,我们需要手动进行一些调整:第一步,将编译好的包含hive的JAR包上传到hdfs上配置的默认的spark的sharelib目录:/user/spark/share/lib第二步:在你要运行spark-shell脚本的节点上的/opt/cloudera/parcels/CDH-5.3.0-1.cdh5.3.0.p0.30/lib/spark/lib/目录下面,下载这个jar到这个目录:hadoopfs-gethdfs://n1:8020/user/spark/share/lib/spark-assembly-with-hive-maven.jar(具体路径替换成你自己的)桐燃。然后这个目录下面原来会有个软链接spark-assembly.jar指向的是spark-assembly-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar,我们把这个软链接删除掉重新创建一个同名的软链接:ln-sspark-assembly-with-hive-maven.jarspark-assembly.jar,指向我们刚下载下来的那个JAR包,这个JAR包会在启动spark-shell脚本时装载到driverprogram的classpath中去的,sparkContext也是在driver中创建出来的,所以需要将我们编译的JAR包替换掉原来的spark-assembly.jar包,这样在启动spark-shell的时候,包含hive的spark-assembly就被装载到classpath中去了。第三步:在/opt/cloudera/parcels/CDH/lib/spark/conf/目录下面创建一个hive-site.xml。/opt/cloudera/parcels/CDH/lib/spark/conf目录是默认的spark的配置目录,当然你可以修改默认配置目录的位置。hive-site.xml内容如下:hive.metastore.localfalsehive.metastore.uristhrift://n1:9083hive.metastore.client.socket.timeout300hive.metastore.warehouse.dir/user/hive/warehouse这个应该大家都懂的,总要让spark找到hive的元数据在哪吧,于是就有了上面一些配置。第四步:修改/opt/cloudera/parcels/CDH/lib/spark/conf/spark-defaults.conf,添加一个属性:spark.yarn.jar=hdfs://n1:8020/user/spark/share/lib/spark-assembly-with-hive-maven.jar。这个是让每个executor下载到本地然后装载到自己的classpath下面去的,主要是用在yarn-cluster模式。local模式由于driver和executor是同一个进程所以没关系。以上完事之后,运行spark-shell,再输入:valhiveContext=neworg.apache.spark.sql.hive.HiveContext(sc)应该就没问题了。我们再执行一个语句验证一下是不是连接的我们御告指定的hive元数据库:hiveContext.sql("showtables").take(10)//取前十个表看看最后要重点说明一下这里的第二步第三步和第四步,如果是yarn-cluster模式的话,应该替换掉集群所有节点的spark-assembly.jar集群所有节点的sparkconf目录都需局拆虚要添加hive-site.xml,每个节点spark-defaults.conf都需要添加spark.yarn.jar=hdfs://n1:8020/user/spark/share/lib/spark-assembly-with-hive-maven.jar。可以写个shell脚本来替换,不然手动一个一个节点去替换也是蛮累的。