㈠ 指数幂运算法则 是什么
1.同底数幂的乘法:
法则口诀
同底数幂的乘法:底数不变,指数相加幂的乘方;
同底数幂的除法:底数不变,指数相减幂的乘方;
幂的指数乘方:等于各因数分别乘方的积商的乘方
分式乘方:分子分母分别乘方,指数不变。
㈡ 幂数指数的运算法则是什么
乘法
1、同底数幂相乘,底数不变,指数相加。
2、幂的乘方,底数不变,指数相乘。
3、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
4、分式乘方,分子分母各自乘方。
除法
1、同底数幂相除,底数不变,指数相减。
2、规定:
(1)任何不等于零的数的零次幂都等于1。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
运算法则记忆口决
非零数的零次幂,常值为 1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
㈢ 幂的运算法则
幂的运算法则如下:
1、同底数幂的乘法;
2、同底数幂的除法;
3、幂的乘方与积的乘方。
同底数幂的乘法:a·a·a=a,在整个式子中字母m、n、p均为正整数,不然的话整个式子是没有办法成立的。
同底数幂的除法:同底数幂的除法分为三种,第一种同底数幂的除法a÷a=a(),其中a不等于0,m和n均为正整数,而且m大于n。零指数a=1,其中a不等于0。最后就是负整数指数幂a= (其中a≠0, p是正整数),若是当a=0时没有意义的话,则0,0都是没有意义的。
幂的乘方与积的乘方:幂的乘方为(a)=a(),和积的乘方(ab)=ab,以上就是幂的运算法则的全部算法了。
幂的运算注意事项
1、幂的底数a可以是具体的数也可以是多项式。
2、积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。积的乘方可推广到3个以上因式的积的乘方。
3、在做题的时候要看清楚是同底数幂相乘的时候底数不变的情况下指数相加,而同底数幂相除的情况下,底数不变指数是需要相减的,而幂的乘方底数不变,指数相乘,而指数幂相乘,指数不变,底数相乘,通指数幂相乘指数不变,底数相除。