❶ 什么是pid控制_pid控制原理
PID即:Proportional(比例)、Integral(积分)、Differential(微分)的缩写,PID控制算法是结合比例、积分和微分三种环节于一体的控制算法。
它是连续系统中技术最为成熟、应用最为广泛的一种控制算法,该控制算法出现于20世纪30至40年代,适用于对被控对象模型了解不清楚的场合。实际运行的经验和理论的分析都表明,运用这种控制规律对许多工业过程进行控制时,都能得到比较满意的效果。PID控制的实质就是根据输入的偏差值,按照比例、积分、微分的函数关系进行运算,运算结果用以控制输出。
在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在很多控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的。
❷ 通过PID算法,实现对四旋翼飞机的控制具体是怎么回事,求程序
非要用51么
现在有更强大的ARDUINO,两大开源飞控都是基于这个的(APM,Multiwii)
multiwii比较满足你的要求,这只是个程序固件,你可以参考下,如果说要自己写飞控程序难度不小,用一块pro mini开发板+mpu6050模块刷入简单设置好的固件就可以实现飞控的功能,此外还兼容大量的其他模块(地磁,气压),添加升级也很方便(只需要打开固件里的设置)。
要调PID的
❸ PID算法的参数怎么确定
PID是自动控制理论里的一种控制方法,PID的意思分别代表了比例、积分和微分。具体是什么意思呢?解释如下:
首先,我们有一个状态量,这个状态量在整个过程中,我们希望通过输入一个控制量,使这个状态量发生变化,并尽量的接近目标量。比如,在航线控制中,状态量是飞机当前的飞行航向,目标量是飞机为到达目标点而应该飞行的目标航向,控制量则是我们对其进行控制的方向舵面,或横滚角度。我们通过调整方向舵面、横滚角度来控制飞机的当前飞行航向,使之尽量接近为压航线而应该飞行的目标航向。
那么我们如何给出这个控制量,比如给哪个方向的、多大的方向舵量呢?最简单的考虑,是按照当前航向与目标航向的偏差大小来决定给多大的方向舵量:方向舵量p = P * (目标航向 – 当前航向)。这个方向舵量p,就是PID控制里的P部分,即比例部分。
那么,是不是只要有了P,我们的控制就完成了呢?实际上有了P,在大多数情况下,我们可以控制飞机朝目标量去接近,但可能会出现一些情况,比如,当飞机的安装有偏差(我们称之为系统误差),导致我们输出一个左5方向舵给舵机的时候,飞机才能直飞;当不给方向舵,即方向舵放在中位时,飞机会右偏。我们想象一下这个时候如果只有P项控制会有什么后果:假设初始状态是飞机飞行航向和目标航向一致,按P输出飞机方向舵应该在中位。而这时候,由于系统安装误差的存在,会导致飞机偏右,于是偏离了目标航向,然后P项控制会输出一个左舵,来修正航向偏差,刚开始的时候由于偏差量很小,输出的这个左舵也很小,于是飞机继续右偏,然后导致这个左舵加大,最终到达5,使飞机直飞,但这时候的飞行航向与目标航向始终存在一个偏差,这就是P的局限,无法修正系统误差。于是I项积分控制就出场了。
I项的输出这样定义:方向舵量i = I * (偏差和)。偏差和是当前航向和目标航向的偏差,每计算一次累加一次,一直累加到上次的值,再加上这次计算时当前航向和目标航向的偏差。即这个偏差和是跟以前的累积误差有关的。同样是上面的例子,I项的效果就这样体现:当飞机飞行航向与目标航向始终存在偏差时,I项将这个值累加上,比如说是5度吧,于是在P项之上,再叠加一个I*5的修正量,增加了一个左舵,比如说是2,然后导致飞机的飞行航向与目标航向的偏差会小一些。也许这一次计算输出的控制量并没有完全消除误差,但下一次再计算时,如果还有误差,于是会继续再增加输出控制量,使误差再小,于是经过多次计算后,使I项始终输出一个左5的舵量,使误差归零。这就是I项的作用,消除系统误差。
D项的意思是微分。为了便于解释,我们假设不存在系统误差,I项为0。比如当目标航向为0度,当前航向为30度时,根据P项作用,会输出一个左舵,假设为左15吧,使飞机向左转向,于是当前航向逐渐减小,比如减小到20度的时候,P项输出的左舵也会减小到左10。那么,当飞机转到0度时,跟目标航向一致时,P项输出方向舵回到中立位,飞机是否就保持0度直飞了呢?XX是否定的。由于飞机的惯性,飞机在左转弯时产生了一个左转弯的速率,导致飞机航向回到目标航向无偏差且方向舵回中后,仍然还会继续左转,然后产生负的偏差,P项再输出右方向舵,然后再回中。如果P项合适,我们看到的就是一个逐渐收敛于目标航向的飞行航向,即先左过头,然后右过头,再左过头,再右过头……最后过头量越来越小,最终到达目标航向。而D项的作用,就是尽量消除这个过头量,使之尽快贴近目标航向。
D项的定义是:方向舵d = D * (当前状态量 – 上一次的状态量)。在这个例子中,当飞机在从30度的航向,左转弯到0度目标航向的过程中,D项的输出实际上是转弯角速率的比例值,并且方向与P项相反,这样当飞机比较接近0度目标航向时,由于P值已经很小了,而这时候如果转弯速率不小,D项就输出一个右方向舵,抵消过快的转弯速率,阻止飞机航向到达目标航向后继续冲过头。
最后,方向舵量 = 方向舵量p + 方向舵量i + 方向舵量d,为完整的输出。根据飞行的表现,通过对P、I、D系数的调整,最终使输出的控制量能够尽快的控制状态量贴近目标量,并消除系统误差,避免过度震荡。
在完整的固定翼飞控系统中,除了航向通道需要PID控制外,其余需要控制的通道还有:副翼舵->目标横滚角、升降舵->目标俯仰角、目标俯仰角->高度差、油门舵->空速、目标航向->偏航距。
❹ 有没有应用到飞控上的成熟一点的神经网络PID控制算法
您好,非常感谢您发出这个帖子。我现在也在考虑做或者学习相关四轴飞行器的神经网络控制算法。之前我的飞机是用双闭环PID控制算法实现控制飞行的。最近在学习神经网络,我准备用神经网络控制算法来对四轴飞行器姿态误差进行修正,看看能不能实现稳定飞行,或者看是否稳定飞行效果会好点。现在我正处在学习神经网络过程中,之前的基础就是对四轴飞行器的PID控制算法了解的多一点,自己实现了PID算法的编程,飞机可以稳定飞行,我想以后将神经网络控制应用于四轴飞行器中。您出了这个帖子,尽管现在没有人回答,但是我希望您能够更新一下,毕竟经过了这么长时间了,谈谈您的收获吧。让我们学习学习,也可以一起讨论讨论。谢谢!
❺ PID控制器算法
PID的增量型公式:
PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】
PID算法具体分两种:一种是位置式的 ,一种是增量式的。
位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,减多少。换句话说,通过增量PID算法,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。
PID控制原理:
本系统通过摆杆(辊)反馈的位置信号实现同步控制。收线控制采用实时计算吵宽的实际卷径值,通过卷径的变化修正PID前馈量,可以使整个系统准确、稳定运行。
PID系统特点:
1、主驱动电机速度可以通过电位器来控制,把禅樱S350设置为SVC开环矢量控制,将模拟输出端子FM设定为运行频率,从而给定收卷用变频器的主速度。
2、收卷用S350变频器的主速度来自放卷(主驱动)的模拟输出端口。摆杆贺碰丛电位器模拟量
信号通过CI通道作为PID的反馈量。S350的频率源采用主频率Ⅵ和辅助频率源PID叠加的方式。通过调整运行过程PID参数,可以获得稳定的收放卷效果。
3、本系统启用逻辑控制和卷径计算功能,能使系统在任意卷径下平稳启动,同时两组PID参数可确保生产全程摆杆控制效果稳定。
❻ 什么是PID控制算法
PID算法具体分两种:一种是位置式的 ,一种是增量式的。
位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,减多少。换句话说,通过增量PID算法,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。
PID的增量型公式:
PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】
拓展资料:
PID=port ID,在STP(生成树协议)中,若在端口收到的BPDU中BID和path cost相同时,则比较PID来选择阻塞端口。数字电视复用系统名词 PID(Packet Identifier) 在数字电视复用系统中它的作用好比一份文件的文件名,我们可以称它为“标志码传输包” 。工程控制和数学物理方面 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。PID由8位端口优先级加端口号组成,端口号占低位,默认端口号优先级128。