导航:首页 > 源码编译 > 城市视觉算法

城市视觉算法

发布时间:2023-07-01 16:49:08

1. 图像视觉算法(深度学习)和SLAM算法哪个更有前景啊

vSALM(Visual SLAM)能够在跟踪摄像机(用于AR的手持或者头盔,或者装备在机器人上)位置和方位的同时构建三维地图. SLAM算法与ConvNets和深度学习是互补的。SLAM关注几何问题,而深度学习主要关注识别问题。如果你想让机器人走到冰箱面前而不撞到墙,就用SLAM。如果你想让机器人识别冰箱里的物品,就用ConvNets。http://openmvg.readthedocs.io/en/latest/

SLAM相当于实时版本的SFM(Structure From Motion)。vSLAM使用摄像机,放弃了昂贵的激光传感器和惯性传感器(IMU)。单目SLAM使用单个相机,而非单目SLAM通常使用预先标定好的固定基线的立体摄像机。SLAM是基于几何方法的计算机视觉的一个主要的例子。事实上,CMU(卡内基梅陇大学)的机器人研究机构划分了两个课程:基于学习方法的视觉和基于几何方法的视觉。

SFM vs vSLAM

SFM和SLAM解决的是相似的问题,但SFM是以传统的离线的方式来实现的。SLAM慢慢地朝着低功耗,实时和单个RGB相机模式发展。下面是一些流行的开源SFM软件库。

2. 视觉定位和视觉检测技术有哪些共同点和不同点

视觉定位,视觉检测,视觉测量都属于机器视觉的领域。
首先来说共同点,同样使用视觉算法,因此在图像预处理,图像形态学,Blob分析,边缘提取等方面的算法以及思路是一样的。大部分的视觉算法库提供的视觉算法函数都是可以被调用的。
不同点,视觉定位类项目侧重于精度,更多的需要配合自动化设备,比如说机器人,轴组等,在图像处理后通过手眼标定算法将像素坐标系转化成其他的坐标,有时配合激光传感器等实现坐标系的统一。在应用场景方面,有2维定位抓取,3维无序抓取等。在移动机器人领域,视觉定位类项目又分为视觉SLAM等。综上,视觉定位项目侧重于多重技术的结合。视觉检测技术侧重于稳定性,算法方面,结合深度学习,预处理算法,图像增强等实现对物体表面的缺陷检测,字符识别等,在计算机视觉领域,有OCR字符检测,人脸识别,自动驾驶等等。综上,视觉检测技术更侧重于视觉算法本身的深挖。

3. 计算机视觉领域主流的算法和方向有哪些

人工智能是当下很火热的话题,其与大数据的完美结合应用于多个场景,极大的方便了人类的生活。而人工智能又包含深度学习和机器学习两方面的内容。深度学习又以计算机视觉和自然语言处理两个方向发展的最好,最火热。大家对于自然语言处理的接触可能不是很多,但是说起计算机视觉,一定能够马上明白,因为我们每天接触的刷脸支付等手段就会和计算机视觉挂钩。可以说计算机视觉的应用最为广泛。

目标跟踪,就是在某种场景下跟踪特定对象的过程,在无人驾驶领域中有很重要的应用。目前较为流行的目标跟踪算法是基于堆叠自动编码器的DLT。语义分割,则是将图像分为像素组,再进行标记和分类。目前的主流算法都使用完全卷积网络的框架。实例分割,是指将不同类型的实例分类,比如用4种不同颜色来标记4只猫。目前用于实例分割的主流算法是Mask R-CNN。

4. 视觉算法和图像算法的区别

两者其实差别都不算很大,从专业本身来说,模式识别研发就比如汽车的车牌,你怎么去识别,图像算法主要研究目的就是比如车牌你怎么让他更清楚地被你采集后得到有用的信息,还原图片的原来面目等。都是算法类的研究,当然算法也是离不开程序的,如果你对软件不敢新区,那么这两个专业都不是适合你。

5. slam算法是什么

SLAM是Simultaneous localization and mapping缩写,意为“同步定位与建图”,主要用于解决机器人在未知环境运动时的定位与地图构建问题。

Simultaneous Localization and Mapping (SLAM)原本是Robotics领域用来做机器人定位的,最早的SLAM算法其实是没有用视觉camera的(Robotics领域一般用Laser Range Finder来做SLAM)。

SLAM对实时性要求比较高,而要做到比较精确、稳定、可靠、适合多种场景的方案一般计算量相对较大,目前移动式设备的计算能力还不足够支撑这么大的计算量,为了达到实时性能,往往需要在精确度和稳定性上做些牺牲。

因此在具体的应用中,往往需要根据移动设备所具有的传感器组合、计算能力、用户场景等,选择和深度定制合适的SLAM算法。比如,无人驾驶汽车和手机端AR类应用的SLAM算法就非常不同。

SLAM的典型应用领域

机器人定位导航领域:地图建模。SLAM可以辅助机器人执行路径规划、自主探索、导航等任务。国内的科沃斯、塔米以及最新面世的岚豹扫地机器人都可以通过用SLAM算法结合激光雷达或者摄像头的方法,让扫地机高效绘制室内地图,智能分析和规划扫地环境,从而成功让自己步入了智能导航的阵列。

VR/AR方面:辅助增强视觉效果。SLAM技术能够构建视觉效果更为真实的地图,从而针对当前视角渲染虚拟物体的叠加效果,使之更真实没有违和感。VR/AR代表性产品中微软Hololens、谷歌ProjectTango以及MagicLeap都应用了SLAM作为视觉增强手段。

无人机领域:地图建模。SLAM可以快速构建局部3D地图,并与地理信息系统(GIS)、视觉对象识别技术相结合,可以辅助无人机识别路障并自动避障规划路径,曾经刷爆美国朋友圈的Hovercamera无人机,就应用到了SLAM技术。

无人驾驶领域:视觉里程计。SLAM技术可以提供视觉里程计功能,并与GPS等其他定位方式相融合,从而满足无人驾驶精准定位的需求。例如,应用了基于激光雷达技术Google无人驾驶车以及牛津大学MobileRoboticsGroup11年改装的无人驾驶汽车野猫(Wildcat)均已成功路测。

以上内容参考:slam路径规划算法 - CSDN

阅读全文

与城市视觉算法相关的资料

热点内容
程序员打代码最佳时间 浏览:569
怎么装原生态安卓 浏览:847
工程图学pdf 浏览:398
开放的程序员 浏览:952
胡希恕伤寒论讲座pdf 浏览:766
aspnet程序员薪水 浏览:76
苹果为什么屏幕看得比安卓舒服 浏览:119
苹果数据线怎么转安卓 浏览:656
黑格尔pdf下载 浏览:959
备忘录里新建文件夹怎么删除 浏览:12
服务器黑名单怎么处理 浏览:842
程序员电视剧25集 浏览:214
80351单片机 浏览:958
advancedwifi源码 浏览:577
maczip解压成文件夹后怎么打开 浏览:120
androidapp内存大小 浏览:451
程序员干私活网站 浏览:379
未来软件加密锁驱动 浏览:930
美军如何拒绝执行上级命令 浏览:489
布鲁诺pdf 浏览:163