㈠ 幂的运算法则
1、同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n)。
2、同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n)。
3、幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn)。
4、积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np)(其中m,n,p都是整数,且a,b均不为0)。
(1)幂的运算法则扩展阅读:
口诀
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
㈡ 幂的运算公式和法则
同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方
㈢ 幂的运算法则有__________、_________、____________、________
同底数幂的乘法:底数不变,指数相加同底数幂的除法:底数不变,指数相减幂的乘方:底数不变,指数相乘积的乘方:等于各因数分别乘方的积商的乘方(分式乘方):分子分母分别乘方,指数不变
就像
(2/3)^5=2^5/3^5
㈣ 指数幂的指数幂的运算法则
口诀:
指数加减底不变,同底数幂相乘除.
指数相乘底不变,幂的乘方要清楚.
积商乘方原指数,换底乘方再乘除.
非零数的零次幂,常值为 1不糊涂.
负整数的指数幂,指数转正求倒数.
看到分数指数幂,想到底数必非负.
乘方指数是分子,根指数要当分母.
说明:
拓展资料:
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。
一个数可以看做这个数本身的一次方。例如,5就是5^1,指数1通常省略不写。二次方也叫做平方,如5^2通常读做”5的平方“;三次方也叫做立方,如5^3可读做”5的立方“。
㈤ 指数幂的运算法则是什么
(1)任何不等于零的数的零次幂都等于1。
即(a≠0)。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
即(a≠0,p是正整数)。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
1.同底数幂相乘,底数不变,指数相加。
即(m,n都是有理数)。
2.幂的乘方,底数不变,指数相乘。
即(m,n都是有理数)。
3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即=·(m,n都是有理数)。
4.分式乘方,分子分母各自乘方
即(b≠0)。
除法
1.同底数幂相除,底数不变,指数相减。
即(a≠0,m,n都是有理数)。
㈥ 幂的运算法则是什么
同底数幂的乘法:底数不变,指数相加, ,a^m·a^n=a^(m+n)
同底数幂的除法:底数不变,指数相减,a^m÷a^n=a^(m-n)
幂的乘方:底数不变,指数相乘 (a^m)^n=a^mn
积的乘方:等于各因数分别乘方的积 a^m·b^m=(ab)^m
商的乘方(分式乘方):分子分母分别乘方,指数不变 a^m÷b^m=(a/b)^m
㈦ 幂的运算法则有哪些
同底数幂的乘法:底数不变,指数相加
同底数幂的除法:底数不变,指数相减
幂的乘方:底数不变,指数相乘
积的乘方:等于各因数分别乘方的积
商的乘方(分式乘方):分子分母分别乘方,指数不变
㈧ 幂的四则运算法则
如图所示
㈨ 幂的运算法则
摘要 (一)同底数幂的乘法:am×an=a(m+n)(a≠0, m, n均为正整数,并且m>n)