❶ LMS自适应算法分析及在数字滤波器设计中的应用
自适应过程一般采用典型LMS自适应算法,但当滤波器的输入信号为有色随机过程时,特别是当输入信号为高度相关时,这种算法收敛速度要下降许多,这主要是因为输入信号的自相关矩阵特征值的分散程度加剧将导致算法收敛性能的恶化和稳态误差的增大。此时若采用变换域算法可以增加算法收敛速度。变换域算法的基本思想是:先对输入信号进行一次正交变换以去除或衰减其相关性,然后将变换后的信号加到自适应滤波器以实现滤波处理,从而改善相关矩阵的条件数。因为离散傅立叶变换�DFT本身具有近似正交性,加之有FFT快速算法,故频域分块LMS�FBLMS算法被广泛应用。
FBLMS算法本质上是以频域来实现时域分块LMS算法的,即将时域数据分组构成N个点的数据块,且在每块上滤波权系数保持不变。其原理框图如图2所示。FBLMS算法在频域内可以用数字信号处理中的重叠保留法来实现,其计算量比时域法大为减少,也可以用重叠相加法来计算,但这种算法比重叠保留法需要较大的计算量。块数据的任何重叠比例都是可行的,但以50%的重叠计算效率为最高。对FBLMS算法和典型LMS算法的运算量做了比较,并从理论上讨论了两个算法中乘法部分的运算量。本文从实际工程出发,详细分析了两个算法中乘法和加法的总运算量,其结果为:
复杂度之比=FBLMS实数乘加次数/LMS实数乘加次数=(25Nlog2N+2N-4)/[2N(2N-1)]�
采用ADSP的C语言来实现FBLMS算法的程序如下:
for(i=0;i<=30;i++)
{for(j=0;j<=n-1;j++)
{in[j]=input[i×N+j;]
rfft(in,tin,nf,wfft,wst,n);
rfft(w,tw,wf,wfft,wst,n);
cvecvmlt(inf,wf,inw,n);
ifft(inw,t,O,wfft,wst,n);
for(j=0,j<=N-1;j++)
{y[i×N+j]=O[N+j].re;
e[i×N+j]=refere[i×N+j]-y[i×N+j];
temp[N+j]=e[i×N+j;}
rfft(temp,t,E,wfft,wst,n);
for(j=0;j<=n-1;j++)
{inf_conj[j]=conjf(inf[j]);}��
cvecvmlt(E,inf_conj,Ein,n);
ifft(Ein,t,Ein,wfft,wst,n);
for(j=0;j<=N-1;j++)
{OO[j]=Ein[j].re;
w[j]=w[j]+2*u*OO[j];}��
}
在EZ-KIT测试板中,笔者用汇编语言和C语言程序分别测试了典型LMS算法的运行速度,并与FBLMS算法的C语言运行速度进行了比较,表2所列是其比较结果,从表2可以看出滤波器阶数为64时,即使是用C语言编写的FBLMS算法也比用汇编编写的LMS算法速度快20%以上,如果滤波器的阶数更大,则速度会提高更多。
❷ 急求,matlab在自适应均衡中RLS和LMS算法的程序
%lms算法源程序
clear all
close all
%channel system order
sysorder = 5 ;
% Number of system points
N=2000;
inp = randn(N,1);
n = randn(N,1);
[b,a] = butter(2,0.25);
Gz = tf(b,a,-1);
%This function is submitted to make inverse Z-transform (Matlab central file exchange)
%The first sysorder weight value
%h=ldiv(b,a,sysorder)';
% if you use ldiv this will give h :filter weights to be
h= [0.0976;
0.2873;
0.3360;
0.2210;
0.0964;];
y = lsim(Gz,inp);
%add some noise
n = n * std(y)/(10*std(n));
d = y + n;
totallength=size(d,1);
%Take 60 points for training
N=60 ;
%begin of algorithm
w = zeros ( sysorder , 1 ) ;
for n = sysorder : N
u = inp(n:-1:n-sysorder+1) ;
y(n)= w' * u;
e(n) = d(n) - y(n) ;
% Start with big mu for speeding the convergence then slow down to reach the correct weights
if n < 20
mu=0.32;
else
mu=0.15;
end
w = w + mu * u * e(n) ;
end
%check of results
for n = N+1 : totallength
u = inp(n:-1:n-sysorder+1) ;
y(n) = w' * u ;
e(n) = d(n) - y(n) ;
end
hold on
plot(d)
plot(y,'r');
title('System output') ;
xlabel('Samples')
ylabel('True and estimated output')
figure
semilogy((abs(e))) ;
title('Error curve') ;
xlabel('Samples')
ylabel('Error value')
figure
plot(h, 'k+')
hold on
plot(w, 'r*')
legend('Actual weights','Estimated weights')
title('Comparison of the actual weights and the estimated weights') ;
axis([0 6 0.05 0.35])
% RLS 算法
randn('seed', 0) ;
rand('seed', 0) ;
NoOfData = 8000 ; % Set no of data points used for training
Order = 32 ; % Set the adaptive filter order
Lambda = 0.98 ; % Set the forgetting factor
Delta = 0.001 ; % R initialized to Delta*I
x = randn(NoOfData, 1) ;% Input assumed to be white
h = rand(Order, 1) ; % System picked randomly
d = filter(h, 1, x) ; % Generate output (desired signal)
% Initialize RLS
P = Delta * eye ( Order, Order ) ;
w = zeros ( Order, 1 ) ;
% RLS Adaptation
for n = Order : NoOfData ;
u = x(n:-1:n-Order+1) ;
pi_ = u' * P ;
k = Lambda + pi_ * u ;
K = pi_'/k;
e(n) = d(n) - w' * u ;
w = w + K * e(n) ;
PPrime = K * pi_ ;
P = ( P - PPrime ) / Lambda ;
w_err(n) = norm(h - w) ;
end ;
% Plot results
figure ;
plot(20*log10(abs(e))) ;
title('Learning Curve') ;
xlabel('Iteration Number') ;
ylabel('Output Estimation Error in dB') ;
figure ;
semilogy(w_err) ;
title('Weight Estimation Error') ;
xlabel('Iteration Number') ;
ylabel('Weight Error in dB') ;
可以看得出来,收敛速度RLS更快,对程序可以看得出来运算量也是RLS更大。
可以参照我回答的解决一个RLS具体问题的例子。在网络里面可以搜到。
❸ 什么是LMS算法
LMS算法是指 Least mean square 算法的意思。
全称 Least mean square 算法。是最小均方算法中文。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hopf在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。
❹ 什么是LMS自适应均衡器,怎么用FPGA实现LMS自适应均衡器
自适应均衡属于自适应信号处理的应用范畴,各种各样的自适应均衡算法如迫零(ZF)算法、最小均方(LMS)算法、递归最小二乘(RLS)算法、变换域均衡算此答正法、Bussgang 算法、高阶森悔或循环统计量算法、基于非线性滤波器或神经网络的均衡算法等应运而生。均衡器通常工作在接收机的举锋基带或中频信号部分,基带信号的复包络含有信道带宽信号的全部信息,所以,均衡器通常在基带信号完成估计信道冲激响应和解调输出信号中实现自适应算法等
❺ 自适应算法的简介
自适应过程是一个不断逼近目标的过程。它所遵循的途径以数学模型表示,称为自适应算法。通常采用基于梯度的算法,其中最小均方误差算法(即LMS算法)尤为常用。自适应算法可以用硬件(处理电路)或软件(程序控制)两种办法实现。前者依据算法的数学模型设计电路,后者则将算法的数学模型编制成程序并用计算机实现。算法有很多种,它的选择很重要,它决定处理系统的性能质量和可行性。
自适应均衡器的原理就是按照某种准则和算法对其系数进行调整最终使自适应均衡器的代价(目标)函数最小化,达到最佳均衡的目的。而各种调整系数的算法就称为自适应算法,自适应算法是根据某个最优准则来设计的。最常用的自适应算法有迫零算法,最陡下降算法,LMS算法,RLS算法以及各种盲均衡算法等。在理论上证明了对于任何统计特性的噪声干扰,VLMS算法优于LMS算法。
自适应算法所采用的最优准则有最小均方误差(LMS)准则,最小二乘(LS)准则、最大信噪比准则和统计检测准则等,其中最小均方误差(LMS)准则和最小二乘(LS)准则是目前最为流行的自适应算法准则。由此可见LMS算法和RLS算法由于采用的最优准则不同,因此这两种算法在性能,复杂度等方面均有许多差别。
❻ 什么是LMS算法,全称是什么
1959年,Widrow和Hof提出的最小均方(LMS )算法对自适应技术的发展起了极
大的作用。由于LMS算法简单和易于实现,它至今仍被广泛应用。对LMS算法的性能
和改进算法已经做了相当多的研究,并且至今仍是一个重要的研究课题。进一步的研究
工作涉及这种算法在非平稳、相关输入时的性能研究。当输入相关矩阵的特征值分散时,
LMS算法的收敛性变差,研究的另一个方面在于如何解决步长大小与失调量之间的矛
盾。
全称 Least mean square
❼ lms算法是什么
LMS(Least mean square)算法,即最小均方误差算法。
lms算法由美国斯坦福大学的B Widrow和M E Hoff于1960年在研究自适应理论时提出,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。在滤波器优化设计中,采用某种最小代价函数或者某个性能指标来衡量滤波器的好坏,而最常用的指标就是均方误差,也把这种衡量滤波器好坏的方法叫做均方误差准则。lms算法的特点
根据小均方误差准则以及均方误差曲面,自然的我们会想到沿每一时刻均方误差 的陡下降在权向量面上的投影方向更新,也就是通过目标函数的反梯度向量来反 复迭代更新。由于均方误差性能曲面只有一个唯一的极小值,只要收敛步长选择恰当, 不管初始权向量在哪,后都可以收敛到误差曲面的小点,或者是在它的一个邻域内。