A. 博弈均衡的进化稳定策略的算法
计算进化稳定策略的方法主要有两大类:一是从动态过程出发,求出系统的平衡点,然后,再根据进化稳定策略的定义进行验证就可以了;另一种方法就是直接用进化稳定策略定义来求。第一种方法涉及到具体的动态过程,并且只要知道动态过程就很容易求出进化稳定策略,本文略(可以参考张良桥2001)。第二种方法就是通过定义来求,下面给出一种简单的处理方法。
根据纳什均衡的定义可以知道,如果策略 是博弈的纳什均衡,那么,所有以正概率进入最优混合策略的纯策略都是最优的,参与人在所有这些纯策略所得的支付都是无差异的(见《博弈论与信息经济学》102-103页,张维迎),即有:
表示混合策略中非零概率的纯策略。假定存在 且下标为 的纯策略满足 ,令B是矩阵A中对应于非零纯策略的 阶子矩阵。且令C为 矩阵,其中代表元素为: 。那么当且仅当C是负定的, 就是进化稳定策略(见John Haigh 1974)。
证明:假定 ,并且存在 ,有 ,那么很明显有 ,其中 是第 个纯策略,即在与稳定策略者群体博弈时,突变策略者得到的支付比稳定策略者还要大,所以策略 不是进化稳定策略,所以式(6)是进化稳定策略的必要条件。因此,对应于非零概率的纯策略满足: ,对满足条件的策略 有(注意 ):
对任意 ,当且仅当
有: 。综上所述,利用该方法来求进化稳定策略的步骤如下:
首先,令 个非零混合策略,然后解 个方程: ,定义B,C再考察矩阵C的所有特征根是否都为负,若都是负则所得的策略就是进化稳定策略。
如求对称博弈 ,它有两个进化稳定策略: 。
如果某策略组合是严格纳什均衡策略,那么就可以直接得出它就是进化稳定策略,但如果是弱纳什均衡策略,那么就可运用上述的方法来进行判定。由此,可得到求博弈的进化稳定策略步骤:一是求出博弈所有的纳什均衡;二是由支付判断出其中的严格纳什均衡;三对非严格纳什均衡而言就代入上述方程,并判断是否为负定即可以求出博弈中所有进化稳定策略。