㈠ 二叉树遍历的算法
void PreOrder(BiTree t) { /* 二叉树的先序遍历算法 */
if(t!=NULL) {
putchar (t->data);
PreOrder(t->lchild);
PreOrder(t->rchild);
}
}
void InOrder(BiTree t) { /* 二叉树的先中序遍历算法 */
if(t != NULL) {
InOrder(t->lchild);
putchar(t->data);
InOrder(t->rchild);
}
}
void PostOrder(BiTree t) { /* 二叉树的后序遍历算法 */
if(t != NULL) {
PostOrder(t->lchild);
PostOrder(t->rchild);
putchar(t->data);
}
}
㈡ 求二叉树遍历算法C语言实现的
Status
PreOrderTraverse
(
BiTree
T,
Status
(
*Visit
)
(
TElemType
e
)
)
{
//
采用二叉链表存储结构,Visit
是对数据元素操作的应用函数,先序遍历二叉树
T
的递归算法。
if
(
T
)
{
//
若
T
不为空
if
(
Visit
(
T->data
)
)
//
调用函数
Visit
if
(
PreOrderTraverse
(
T->lchild,
Visit
)
)
//
递归调用左子树
if
(
PreOrderTraverse
(
T->rchild,
Visit
)
)
return
OK;
//
递归调用右子树
return
ERROR;
}
else
return
OK;
}
//
PreOrderTraverse
㈢ 求一个c语言遍历二叉树的算法
#include <stdio.h>
#include <stdlib.h>
//1 根据二叉树的性质5,结点按完全二叉树来编号,则根据结点编号,
// 就可算出其双亲结点的编号,以及该结点是左孩子还是右孩子,
// 这样一来,就可把该结点的指针赋予双亲结点的相应指针域。
// 怎样找到双亲结点呢?,在输入双亲结点的同时要把结点的指针
// 保存起来。也就是说,要设计一个指针数组,来保存每个结点指针。
// 这样,当输入下层结点时,才能找到它的双亲。
//2 回想单链表的建立过程,单链表建立过程中,只需把当前结点,
// 当成前驱结点,故只需设计一个指针变量即可。
typedef char ElementType;
typedef struct node //二叉树链表结点
{
ElementType data;
struct node *lchild,*rchild;//左、右孩子指针
}BinNode,*BinTree; //结点和结点指针的标识符
BinNode * creat(void) //建二叉树链表(返回根结点的指针)
{
int i,j;
ElementType x;
BinNode *q,*s[20];//结点指针、辅助数组(存放结点的指针,该结点有可能是双亲结点)
BinNode *t=NULL; //根结点指针(目前是空树,生成树后要返回根结点指针)
printf("\n 请输入结点编号i和结点值x");
printf("\n 如:1A 2B 3C 4D 5E 7F 00(全为0,输入结束)");
printf("\n 或:1A 2B 3C 4D 6F 7G 00(全为0,输入结束)");
printf("\n 或:1A 2B 3C 5E 7G 15M 00(全为0,输入结束)\n");
scanf("%d%c",&i,&x); //输入结点编号及结点值
while((i!=0)&&(x!=0))
{
q=(BinNode *)malloc(sizeof(BinNode));//申请结点内存
q->data=x; //保存数据
q->lchild=NULL;
q->rchild=NULL;
s[i]=q; //s[i]存放第i号结点的指针
if(i==1) //1号结点是根结点
t=q; //保存根结点指针,以备返回
else
{
j=i/2; //由该结点号求双亲结点号
if((i%2)==0)
s[j]->lchild=q; //i为偶数是左孩子,该结点指针存入双亲结点的左孩子指针
else
s[j]->rchild=q; //i为奇数是右孩子,该结点指针存入双亲结点的右孩子指针
}
scanf("%d%c",&i,&x);//继续输入结点编号和结点值
}
return t; //返回根结点的指针(二叉链表的指针)
}
void DisplayBinTree(BinTree T)//用缩进表示二叉树
{
BinTree stack[100],p; //栈(结点指针数组)、当前结点指针
int level[100]; //栈(每层根结点对应的空格 数 )
int flag[100]; //栈(flag[]=0,1,2分别表示是根结点、左子树、右子树 )
int top,n,i; //栈顶指针,空格个数,循环变量
if(T!=NULL) //若有根结点
{
top=1; //1号结点(根结点 )
stack[top]=T; //入栈(保存根结点指针)
level[top]=1; //显示空格的个数
flag[top]=0; //根结点
while(top>0) //有根结点
{
p=stack[top]; //取根结点指针
n=level[top]; //取显示空格的个数
for(i=1;i<=n;i++)//显示空格(缩进)
printf(" ");
if(flag[top]==0) //若是根结点
printf("T:%c\n",p->data); //显示根结点
else //不是根结点
{
if(flag[top]==2) //是右子树根结点
printf("R:%c\n",p->data); //显示右子树根结点
if(flag[top]==1) //是左子树根结点
printf("L:%c\n",p->data,top); //显示左子树根结点
}
top--; //显示一个(出栈一个)结点,top-1
if(p->rchild!=NULL)//若有右孩子
{
top++; //保存一个根结点,top+1
stack[top]=p->rchild;//保存右子树根结点
level[top]=n+3;
flag[top]=2;
}
if(p->lchild!=NULL)//若有左孩子
{
top++;
stack[top]=p->lchild;//保存左子树根结点
level[top]=n+3;
flag[top]=1;
}
// printf("level[top]=%d\n",level[top]);
}
}
}
main()
{
BinNode *T; //根结点的指针
T=creat(); //建二叉树
printf("\n用缩进表示二叉树的层次(如ppt62所示):\n");
DisplayBinTree(T);
getch();
}
㈣ 求高手赐教:层次遍历一棵树的算法思想
利用队列 首先将根节点入队,再循环里出队,并将其子节点入队,循环直到对列为空就行
回复1楼 就是因为对列是先进先出的才用队列 如果先进后出就变成倒序甚至乱序了
㈤ 二叉树的遍历算法
怎么又来问了,不是回答过你了吗?很简单,就是一个递归过程。在函数中以先序遍历的第一个结点在中序遍历中为界把中序遍历分为两半,再分别把左一半和右一半作为这个结点的左子树和右子树进行递归。完成递归之后再打印该结点即可。结束递归的条件是左子树或右子树没有结点。下面是简单的程序示意,可以用任意语言实现。
不过你给出的这个前序遍历和中序遍历却是有问题的,如果改成ABDEGCFH和DBGEAFCH的话其后序遍历就是:D G E B F H C A
import sys
rflist = list(sys.argv[1])
rmlist = list(sys.argv[2])
def printTreeRootLast(r, rflist, rmlist):
r[0] = rflist.pop(0)
rmLeftNodes = rmlist[:rmlist.index(r[0])]
if len(rmLeftNodes) == 0:
r[1] = None
else:
r[1] = [None, None, None]
printTreeRootLast(r[1], rflist, rmLeftNodes)
rmRightNodes = rmlist[rmlist.index(r[0])+1:]
if len(rmRightNodes) == 0:
r[2] = None
else:
r[2] = [None, None, None]
printTreeRootLast(r[2], rflist, rmRightNodes)
print r[0],
root = [None, None, None]
printTreeRootLast(root, rflist, rmlist)
㈥ 遍历二叉树递归算法
“这个函数的参数visit应该是另一个函数的地址是把,但我怎么感觉不管怎么递归它只是在访问根的时候被调用过一次”
首先,你是对的,visit确实是一个指向函数的指针;
然后,它只是在访问根的时候被调用过一次,这种说法就很片面了。
我觉得应该这么说:(*visit)()函数在BTreePreOrger()函数的一次执行过程中只被调用过一次,但是BTreePreOrger()函数执行了很多次,因此(*visit)()就被调用了n次(假设该树有n个节点)
㈦ 深度优先遍历树的算法怎么编程
程序的头已经有了只要一个深度优先遍历的算法的程序。程序开始如下: #include "stdafx.h" #include "iostream.h" typedf int adjmatrix; const int max value=32767; conts int maxlength=30; int visited[10]; adjmatrix ga[10][10]; void create(int n,int e){int i,j,k,w; for(i=0;i<n;i++) for(j=0;j<n;j++){if(i==j)ga[i][j]=0; else ga[i][j]=max value;}cout<<"请输入"<<e<<"条边的权值:"<<endl; for(k=1;k<=e;k++){cout<<"第"<<k<<"条边的起始顶点,结束顶点及权值,如1 2 8:"; cin>>i>>j>>w; ga[i][j]=w;}}void dfs(int i,int n) //深度优先遍历算法{//请完成函数的编程}void main(){int i,j,n,e; cout<<"请输入顶点个数:";cin>>n;cout<<"请输入边数:";cin>>e;create(n,e); cout<<endl<<"深度优先遍历表:"<<endl; for(i=0;i<n;i++)visited[i]=0; if(!visited[i])dfs(i,n);}只要在请完成函数的编程这部分把程序编完就可以了。
㈧ 中序递归遍历二叉树的算法(数据结构)
Seek( 某一节点)
{
if (这个节点不存在) return ;
Seek(左儿子节点)
处理。例如输入printf(节点.data);
Seek(右儿子节点)
}
㈨ 用递归的方式中序遍历二叉树算法描述
voidtravser(Node*node)
{
if(node==NULL)
return;
travser(node->left);
cout<<node->data;
travser(node->right);
}
㈩ 二叉树遍历的算法实现
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
⑴访问结点本身(N),
⑵遍历该结点的左子树(L),
⑶遍历该结点的右子树(R)。
以上三种操作有六种执行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。 根据访问结点操作发生位置命名:
① NLR:前序遍历(PreorderTraversal亦称(先序遍历))
——访问根结点的操作发生在遍历其左右子树之前。
② LNR:中序遍历(InorderTraversal)
——访问根结点的操作发生在遍历其左右子树之中(间)。
③ LRN:后序遍历(PostorderTraversal)
——访问根结点的操作发生在遍历其左右子树之后。
注意:
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 1.先(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴ 访问根结点;
⑵ 遍历左子树;
⑶ 遍历右子树。
2.中(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵访问根结点;
⑶遍历右子树。
3.后(根)序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵遍历右子树;
⑶访问根结点。 用二叉链表做为存储结构,中序遍历算法可描述为:
void InOrder(BinTree T)
{ //算法里①~⑥是为了说明执行过程加入的标号
① if(T) { // 如果二叉树非空
② InOrder(T->lchild);
③ printf(%c,T->data); // 访问结点
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder 计算中序遍历拥有比较简单直观的投影法,如图
⑴在搜索路线中,若访问结点均是第一次经过结点时进行的,则是前序遍历;若访问结点均是在第二次(或第三次)经过结点时进行的,则是中序遍历(或后序遍历)。只要将搜索路线上所有在第一次、第二次和第三次经过的结点分别列表,即可分别得到该二叉树的前序序列、中序序列和后序序列。
⑵上述三种序列都是线性序列,有且仅有一个开始结点和一个终端结点,其余结点都有且仅有一个前驱结点和一个后继结点。为了区别于树形结构中前驱(即双亲)结点和后继(即孩子)结点的概念,对上述三种线性序列,要在某结点的前驱和后继之前冠以其遍历次序名称。
【例】上图所示的二叉树中结点C,其前序前驱结点是D,前序后继结点是E;中序前驱结点是E,中序后继结点是F;后序前驱结点是F,后序后继结点是A。但是就该树的逻辑结构而言,C的前驱结点是A,后继结点是E和F。
二叉链表基本思想
基于先序遍历的构造,即以二叉树的先序序列为输入构造。
注意:
先序序列中必须加入虚结点以示空指针的位置。
【例】
建立上图所示二叉树,其输入的先序序列是:ABD∮∮∮CE∮∮F∮∮。
构造算法
假设虚结点输入时以空格字符表示,相应的构造算法为:
void CreateBinTree (BinTree **T){ //构造二叉链表。T是指向根指针的指针,故修改*T就修改了实参(根指针)本身 char ch; if((ch=getchar())=='') *T=NULL; //读入空格,将相应指针置空 else{ //读人非空格 *T=(BinTNode *)malloc(sizeof(BinTNode)); //生成结点 (*T)->data=ch; CreateBinTree(&(*T)->lchild); //构造左子树 CreateBinTree(&(*T)->rchild); //构造右子树 }}
注意:
调用该算法时,应将待建立的二叉链表的根指针的地址作为实参。
示例
设root是一根指针(即它的类型是BinTree),则调用CreateBinTree(&root)后root就指向了已构造好的二叉链表的根结点。
二叉树建立过程见
下面是关于二叉树的遍历、查找、删除、更新数据的代码(递归算法): #include<iostream>#include<cstdio>#include<cmath>#include<iomanip>#include<cstdlib>#include<ctime>#include<algorithm>#include<cstring>#include<string>#include<vector>#include<list>#include<stack>#include<queue>#include<map>#include<set>usingnamespacestd;typedefintT;classbst{structNode{Tdata;Node*L;Node*R;Node(constT&d,Node*lp=NULL,Node*rp=NULL):data(d),L(lp),R(rp){}};Node*root;intnum;public:bst():root(NULL),num(0){}voidclear(Node*t){if(t==NULL)return;clear(t->L);clear(t->R);deletet;}~bst(){clear(root);}voidclear(){clear(root);num=0;root=NULL;}boolempty(){returnroot==NULL;}intsize(){returnnum;}TgetRoot(){if(empty())throwemptytree;returnroot->data;}voidtravel(Node*tree){if(tree==NULL)return;travel(tree->L);cout<<tree->data<<'';travel(tree->R);}voidtravel(){travel(root);cout<<endl;}intheight(Node*tree){if(tree==NULL)return0;intlh=height(tree->L);intrh=height(tree->R);return1+(lh>rh?lh:rh);}intheight(){returnheight(root);}voidinsert(Node*&tree,constT&d){if(tree==NULL)tree=newNode(d);elseif(ddata)insert(tree->L,d);elseinsert(tree->R,d);}voidinsert(constT&d){insert(root,d);num++;}Node*&find(Node*&tree,constT&d){if(tree==NULL)returntree;if(tree->data==d)returntree;if(ddata)returnfind(tree->L,d);elsereturnfind(tree->R,d);}boolfind(constT&d){returnfind(root,d)!=NULL;}boolerase(constT&d){Node*&pt=find(root,d);if(pt==NULL)returnfalse;combine(pt->L,pt->R);Node*p=pt;pt=pt->R;deletep;num--;returntrue;}voidcombine(Node*lc,Node*&rc){if(lc==NULL)return;if(rc==NULL)rc=lc;elsecombine(lc,rc->L);}boolupdate(constT&od,constT&nd){Node*p=find(root,od);if(p==NULL)returnfalse;erase(od);insert(nd);returntrue;}};intmain(){bstb;cout<<inputsomeintegers:;for(;;){intn;cin>>n;b.insert(n);if(cin.peek()=='
')break;}for(;;){cout<<inputdatapair:;intod,nd;cin>>od>>nd;if(od==-1&&nd==-1)break;b.update(od,nd);}}